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Synchronisation of krill to the seasonal environment @MI,

Photoperiod at different latitudes
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Synchronisation of krill to the seasonal environment @M”
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Synchronisation of krill to the seasonal environment

*

eV

Metabolic activity

0.9
0.8
0.7
0.e
0.5
0.4
0.3
0.2
0.1
0.0

pl O, mg dry massh?

Seasonal physiological functions in krill
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Environmental Zeitgeber and molecular clocks @NV/
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Environmental Zeitgeber and molecular clocks @ NVI

Molecular clock: Molecular system that is able to maintain a given biological rhythm
even under free-running conditions, i.e. in the absence of a Zeitgeber: Environmental
stimulus that serves as a synchronization cue: — Entrainment

* Rhythms are temperature-compensated
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Environmental Zeitgeber and molecular clocks
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Principle of endogenous rhythm generation: , The circadian clock”

The Circadian System Model
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Environmental Zeitgeber and molecular clocks @‘NVI

Principle of endogenous rhythm generation: , The circadian clock”

» the earth’s rotation, generating predictable daily fluctuations of light
and temperature as well as food availability that most organisms are
exposed to.

» awide range of organisms have adapted to this 24 h rhythm by
developing an endogenous timing system — Circadian clock (Latin:
“circa dies”: about a day)

* An endogenous near-24 h periodicity

« Are protected from changes in temperature, nutrition and pH

« Can be tuned to oscillate with exactly 24 h period — Entrainment
« ltis believed that also seasonal rythmicity is driven by these clock
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Environmental Zeitgeber and molecular clocks @‘NVI

Act photoperiod and/or food as Zeitgeber for
an molecular clock in krill?
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Environmental Zeitgeber and molecular clocks @‘NVI

Seasonal feeding activity Feeding activity in lab experiments
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Environmental Zeitgeber and molecular clocks @*AN/
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Metabolic activity in lab experiments
» Constant high food
« Seasonal photoperiod
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Environmental Zeitgeber and molecular clocks @ANl

Seasonal gene expression at different latitudes
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Environmental Zeitgeber and molecular clocks

AV

Seasonal feeding activity and lipid dynamic at different latitudes
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Environmental Zeitgeber and molecular clocks @NV/
*

Photoperiod seem to act as important Zeitgeber for
physiological functions such as:

* Metabolic activity
* Appetite

Indication that physiological function in krill are
mediated by an molecular clock?
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A molecular clock in Antarctic krill @ /
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Seasonal rhythms during light and constant darkness at
constant high food concentration
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A molecular clock in Antarctic krill @ NV/

The clock machinery in krill
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A molecular clock in Antarctic krill @ NVI

Clockwork machinery reference models
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Krill circadian oscillator seems to be a 2 cryptocromes-based system (butterfly
model); where CRY1 is involved in the synchronization of the clock through the
light-mediated degradation of TIM, while CRY2 inhibits CLOCK:CYCLE-mediated
transcription.
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Summary and outlook @. /

* Photoperiod is an important Zeitgeber for
Antarctic krill

A molecular clock in krill is identified

* The clock machinery of krill is similar to the
monarch butterfly model

* The work is part of the international
PolarTime project
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Summary and outlook

PolarTime-Project:

Biological timing in a changing marine
Environment:

Clocks and rhythms in polar pelagic organisms
Funded by the Helmholtz Association
www.polartime.org

*
ALFRED-WEGENER-INSTITUT
HELMHOLTZ-ZENTRUM FUR POLAR-
UND MEERESFORSCHUNG

& N B L 0
. UNIVERSITA o CAgs " ﬁ HELMHOLTZ
| DEGLI STUDI Australian Government OSSIETZKY CENTRE FOR
PADOV Department of Sustainability, Environment universitat CHARITE ENVIRONMENTAL
AN DI FADOVA “‘almlmmmand(-_':n;munm ' OLDENBURG RESEARCH - UFZ

Aasstralim Antarctic Division

@ HELMHOLTZ



Summary and outlook @* ,
What next?

Long-term simulations (1.5 years) with changing light and food
conditions study the importance of photoperiod and food as I
seasonal Zeitgeber (end of experiments June 2016)
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Summary and outlook @‘NV,

« Marine chronobiology in times of climate change gets
more and more attention.

Current Biology

Moonlight Drives Ocean-Scale Mass Vertical
Migration of Zooplankton during the Arctic Winter

Last et al. 2016

Cell Rep. 2013 Oct 17; 5(1): 99-113. PMCID: PMC3913041
doi: 10.1016/j.celrep.2013.08.031

Circadian and Circalunar Clock Interactions in a Marine Annelid

Juliane Zantke,“’2 Tomoko Ishikawa-Fuiiwara,:3 Enrigue Arboleda,1'5 Claudia Lohs,"’6 Katharina Schipanv,1‘7 Natalia
Hallan{,1'2 Andrew D. Straw,4 Takeshi Todo,3 and Kristin Tessmar-Raible!2*

« Marine chronobiology research will be an essential part to
understand and predict population shifts of pelagic key
Invertebrates and ecosystem response
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