EFFECT OF LIGHT REGIME ON THE SEASONAL CYCLE OF ANTARCTIC KRILL

Flavia Höring

Mathias Teschke, Fabio Piccolin, Lavinia Suberg, Felix Müller, So Kawaguchi, Bettina Meyer

3rd International Symposium on Krill, St. Andrews, Scotland Ecosystems: why are krill so successful?

14 June 2017

Why are krill so successful?

Seasonal rhythms in E. superba

Maturation cycle

Respiration

Lipid dynamics

Latitudinal differences:

Lower lipid stores and higher feeding activities observed at lower latitudes in winter

How are these rhythms modulated?

Biological timing in E. superba

The concept of biological clocks

Clock genes and an endogenous timing system in Antarctic krill

Aim of the study

Research objectives:

- Investigation of the effect of different latitudinal light regimes on the phenology of *E. superba*
 - 1) Growth
 - 2) Maturity
 - 3) Lipid metabolism
 - 4) Gene expression
- Long-term lab experiments over 2 years with constant food supply

Hypotheses:

- I. Light regime triggers seasonal rhythms in Antarctic krill.
- II. Seasonal rhythms are maintained by an endogenous timing system.

Long-term lab experiments

Australian Antarctic Division, Kingston, Tasmania

Experimental set-up

Hypothesis I: Light regime triggers seasonal rhythms in Antarctic krill.

Hypothesis II: Seasonal rhythms are maintained by an endogenous timing system.

Growth

Generalized additive mixed model (GAMM):

Carapax length ~ General trend + Seasonal trend

General trend

Simulated light regimes

Similar trend in all treatments:

Shrinkage in beginning of experiment – related to experimental conditions

Growth

Generalized additive mixed model (GAMM):

Carapax length ~ General trend + Seasonal trend

Seasonal trend

Similar trend in all treatments:

- Seasonal trend observed in all treatments influenced by light regime
- > Rhythmic pattern under constant darkness Indication for an endogenous seasonal timing system

Simulated light regimes

Maturity analysis

Differences between females and males

Relationship between maturity and photoperiod:

- Different pattern in females and males
- Further maturity analysis carried out with females only

Simulated light regimes

Maturity analysis

Generalized additive model (GAM):

Maturity score ~ Seasonal trend

Seasonal trend

- Seasonal pattern observed under light regimes 52°S, 62°S and 66°S
- No seasonality under constant darkness

Maturity analysis

Maturity under constant darkness

- Sexual regression in beginning of experiment
- Indication for an endogenous timing system

Simulated light regimes

Maturity analysis

Binomial model:

Probability of maturity score 5 ~ Hours of light

 Probability of sexual maturity higher with longer photoperiod

Are the critical photoperiods different between treatments?

Maturity analysis

Binomial model:

Probability of maturity score 5 ~ Hours of light

Analysis of critical photoperiods

> CPP is longer in higher latitude light regime

What is the advantage of different critical photoperiods?

- Longer CPPs an adaptation to the light regime at higher latitudes
- Krill is able to start sexual regression and maturation at the right time

Conclusions

- 1) Growth
 - Seasonal growth patterns are influenced by light regime
 - Growth patterns are modulated by an endogenous timing system

2) Maturity

- The maturity cycle is light-dependent
- The observation of sexual regression under constant darkness
 suggests an endogenous timing system in krill
- Krill under the high latitude light regime have a longer critical photoperiod (an adaptation to more extreme light conditions)

Take-home message

Seasonal cycles of growth and maturity in *E. superba* are triggered by different latitudinal light regimes and governed by an endogenous timing system.

Acknowledgments

LFRED-WEGENER-INSTITUT ELMHOLTZ-ZENTRUM FÜR POLAR-ND MEERESFORSCHUNG

Australian Government

* Department of the Environment and Energy Australian Antarctic Division

Literature

- Brown, M., Kawaguchi, S., King, R., Virtue, P., Nicol, S. (2011). Flexible adaptation of the seasonal krill maturity cycle in the laboratory. J. Plankton Res. *33*, 821–826.
- Brown, M., Kawaguchi, S., Candy, S., Yoshida, T., Virtue, P., and Nicol, S. (2013). Long-Term Effect of Photoperiod, Temperature and Feeding Regimes on the Respiration Rates of Antarctic Krill (Euphausia superba). Open J. Mar. Sci. *03*, 40–51.
- Mazzotta, G.M., De Pittà, C., Benna, C., Tosatto, S.C.E., Lanfranchi, G., Bertolucci, C., and Costa, R. (2010). A cry from the krill. Chronobiol. Int. 27, 425–445.
- Kawaguchi, S., Yoshida, T., Finley, L., Cramp, P., and Nicol, S. (2006). The krill maturity cycle: a conceptural model of the seasonal cycle in Antarctic krill. Polar Biol. 30, 689-698.
- Meyer, B. (2012). The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol. *35*, 15–37.
- Meyer, B., Auerswald, L., Siegel, V., Spahić, S., Pape, C., Fach, B.A., Teschke, M., Lopata, A., and Fuentes, V. (2010). Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar. Ecol. Prog. Ser. 398, 1–18.
- Schmidt, K., Atkinson, A., Pond, D.W., and Ireland, L.C. (2014). Feeding and overwintering of Antarctic krill across its major habitats: The role of sea ice cover, water depth, and phytoplankton abundance. Limnol. Oceanogr. 59, 17–36.
- Seear, P., Tarling, G.A., Teschke, M., Meyer, B., Thorne, M.A., Clark, M.S., Gaten, E., and Rosato, E. (2009). Effects of simulated light regimes on gene expression in Antarctic krill (< i> Euphausia superba</i> Dana). J. Exp. Mar. Biol. Ecol. 381, 57–64.
- Teschke, M., Kawaguchi, S., and Meyer, B. (2007). Simulated light regimes affect feeding and metabolism of Antarctic krill, Euphausia superba. Limnol. Oceanogr. *52*, 1046–1054.
- Teschke, M., Kawaguchi, S., and Meyer, B. (2008). Effects of simulated light regimes on maturity and body composition of Antarctic krill, Euphausia superba. Mar. Biol. *154*, 315–324.
- Teschke, M., Wendt, S., Kawaguchi, S., Kramer, A., and Meyer, B. (2011). A Circadian Clock in Antarctic Krill: An Endogenous Timing System Governs Metabolic Output Rhythms in the Euphausid Species Euphausia superba. PLoS ONE 6, e26090–e26090.