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Why are krill so successful?

The Southern Ocean —
a strongly seasonal habitat
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Seasonal rhythms in E. superba

Maturation cycle

Maturation cycle under natural light regime
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- Photoperiod has an impact on: > Maturity &s On/y

> Body composition
> Respiration rate
> (Gene expression

- Clock genes and an endogenous timing system in Antarctic krill




N
Aim of the study

Research objectives:

> Ir?vestigatio.n of the .effect of Hypotheses:
different latitudinal light regimes
on the phenology of E. superba .

Light regime triggers seasonal
rhythms in Antarctic krill.

1) Growth o
2) Maturit ll.  Seasonal rhythms are maintained

) Maturity by an endogenous timing system.
3) Lipid metabolism

4) Gene expression

> Long-term lab experiments
over 2 years with constant food

supply




Long-term lab experiments

Australian Antarctic Division, Kingston, Tasmania

Experimental set-up Recorded data

Hypothesis I: Light regime triggers seasonal rhythms in Antarctic krill.
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Hypothesis II: Seasonal rhythms are maintained by an endogenous timing system. Photos: Fabio Piccolin



Simulated light regimes

20

Growth

15

Hours of light

Generalized additive mixed model (GAMM):

Carapax length ~ General trend + Seasonal trend

General trend Month

Treatment 52°S Treatment 66°S Treatment DD
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Similar trend in all treatments:

» Shrinkage in beginning of experiment — related to experimental conditions



Simulated light regimes
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Generalized additive mixed model (GAMM):

Carapax length ~ General trend + Seasonal trend

Seasonal trend Month
Treatment 52°S Treatment 66°S Treatment DD
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Similar trend in all treatments:
» Seasonal trend observed in all treatments — influenced by light regime

» Rhythmic pattern under constant darkness — Indication for an endogenous seasonal timing system



Maturity analysis

Differences between females and males
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Relationship between maturity and photoperiod:
» Different pattern in females and males

» Further maturity analysis carried out with females only



Simulated light regimes

Maturity analysis
Generalized additive model (GAM): ; 9 :
Maturity score ~ Seasonal trend
Seasonal trend S Mosnm S
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» Seasonal pattern observed under light regimes 52°S, 62°S and 66°S

» No seasonality under constant darkness
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Maturity analysis

Maturity under constant darkness

Treatment DD
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» Sexual regression in beginning of experiment

» Indication for an endogenous timing system
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Maturity analysis

Binomial model:

Probability of maturity score 5 ~ Hours of light
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» Probability of sexual
maturity higher with

longer photoperiod

Are the critical photoperiods different between treatments?

12



Maturity analysis

Binomial model:

Probability of maturity score 5 ~ Hours of light

Analysis of critical photoperiods

Binomial model
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» Critical photoperiods (CPPs) are different
between treatment 52°S and 66°S
» CPP is longer in higher latitude light regime

What is the advantage of
different critical photoperiods?
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Simulated light regimes
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Longer CPPs — an adaptation to the light
regime at higher latitudes
Krill is able to start sexual regression and

maturation at the right time
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Conclusions

1) Growth
- Seasonal growth patterns are influenced by light regime
- Growth patterns are modulated by an endogenous timing system

2) Maturity
- The maturity cycle is light-dependent

- The observation of sexual regression under constant darkness
suggests an endogenous timing system in Krill

- Krill under the high latitude light regime have a longer critical
photoperiod (an adaptation to more extreme light conditions)



Take-home message

/Seasonal cycles of growth and maturity in E. superba are triggered\
by different latitudinal light regimes and governed by an
endogenous timing system.

Rhythms

Internal
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