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Light regime affects the seasonal cycle of Antarctic krill
(Euphausia superba): impacts on growth, feeding, lipid
metabolism, and maturity
Flavia Höring, Mathias Teschke, Lavinia Suberg, So Kawaguchi, and Bettina Meyer

Abstract: Light regime is an important zeitgeber for Antarctic krill (Euphausia superba Dana, 1850), which seems to entrain an
endogenous timing system that synchronizes its life cycle to the extreme light conditions in the Southern Ocean. To understand
the flexibility of Antarctic krill’s seasonal cycle, we investigated its physiological and behavioural responses to different light
regimes and if an endogenous timing system was involved in the regulation of these seasonal processes. We analysed growth,
feeding, lipid content, and maturity in a 2-year laboratory experiment simulating the latitudinal light regimes at 52°S and 66°S
and constant darkness under constant food level. Our results showed that light regime affected seasonal cycles of growth,
feeding, lipid metabolism, and maturity in Antarctic krill. Seasonal patterns of growth, feeding, and maturity persisted under
constant darkness, indicating the presence of an endogenous timing system. The maturity cycle showed differences in critical
photoperiods according to the simulated latitudinal light regime. This suggests a flexible endogenous timing mechanism in
Antarctic krill, which may determine its response to future environmental changes.

Key words: Euphausia superba, Antarctic krill, latitudinal light regime, endogenous timing system, critical photoperiod, reproduction.

Résumé : Le régime lumineux est un facteur environnemental important pour le krill de l’Antarctique (Euphausia superba Dana,
1850), qui semble permettre l’entrainement d’un système temporel endogène permettant la synchronisation de son cycle de vie
aux conditions lumineuses extrêmes de l’océan Austral. Pour comprendre la souplesse du cycle saisonnier du krill antarctique,
nous avons examiné ses réactions physiologique et comportementale à différents régimes lumineux et vérifié si son système
temporel endogène intervenait dans la régulation de ces processus saisonniers. Nous avons analysé la croissance, l’alimentation,
le contenu lipidique et la maturité dans le cadre d’une expérience en laboratoire sur deux ans qui simulait les régimes lumineux
latitudinaux à 52°S et 66°S et en obscurité constante, dans des conditions d’apport de nourriture constant. Nos résultats
montrent que le régime lumineux a une incidence sur les cycles saisonniers de croissance, d’alimentation, de métabolisme des
lipides et de maturité chez le krill antarctique. Les motifs saisonniers de croissance, d’alimentation et de maturité persistent en
obscurité constante, ce qui indique la présence d’un système temporel endogène. Le cycle de maturité présente des différences
sur le plan des photopériodes critiques selon le régime lumineux latitudinal simulé. Cela indiquerait un mécanisme temporel
endogène souple chez le krill antarctique qui pourrait déterminer sa réaction à des changements environnementaux futurs.
[Traduit par la Rédaction]

Mots-clés : Euphausia superba, krill antarctique, régime lumineux latitudinal, système temporel endogène, photopériode critique,
reproduction.

Introduction
Concerns are growing about the impact of global warming on

the Antarctic marine ecosystem. The observed changes in sea-ice
extent and zooplankton distribution may lead to trophic mis-
matches and thereby profound changes in the Southern Ocean
food web (Atkinson et al. 2004; Steinberg et al. 2015). To be able
to predict future changes, we need to better understand the adap-

tive potential of polar key organisms such as the Antarctic krill
(Euphausia superba Dana, 1850) (Meyer 2010).

Antarctic krill’s success in the Southern Ocean likely originates
from its ability to synchronize its life cycle to local photoperiod
and food supply. It has evolved seasonal patterns of growth, lipid
turnover, metabolic activity (Meyer et al. 2010), and maturation
(Kawaguchi et al. 2007) that bring an evolutionary advantage to
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survive in an environment with strong seasonal fluctuations of
sea-ice extent, photoperiod, and primary production. These sea-
sonal patterns seem to vary according to latitudinal region, as it
has been observed that Antarctic krill near South Georgia (54°S)
had lower lipid stores and higher feeding activities in winter com-
pared with regions at higher latitudes where near-constant dark-
ness during winter limits food supply (Schmidt et al. 2014).
However, the mechanisms shaping these seasonal rhythms re-
main poorly understood.

Photoperiod seems to play a major role in the modulation of the
seasonal rhythms of Antarctic krill. Laboratory experiments re-
vealed that photoperiod affected seasonal patterns of growth
(Brown et al. 2010), maturity (Hirano et al. 2003; Teschke et al.
2008; Brown et al. 2011), feeding, and metabolic activity (Teschke
et al. 2007). It is not yet clear if light regime also promotes accli-
matization to the varying seasonal conditions in different latitu-
dinal habitats of Antarctic krill.

An endogenous timing system may be involved in the regula-
tion of seasonal rhythms in Antarctic krill. Seasonal patterns of
maturity were observed to persist under constant darkness
(Brown et al. 2011), indicating an endogenous timing system that
maintained the rhythm even if the zeitgeber (environmental cue)
was absent (= concept of a biological clock). Recent studies suggest
that Antarctic krill possesses a circadian clock that regulates its
daily metabolic output rhythms and is entrained by photoperiod
(Mazzotta et al. 2010; Teschke et al. 2011). However, it is unknown
if the circadian clock is also involved in the timing of seasonal
events in Antarctic krill.

This study aims to investigate the effect of different light re-
gimes on growth, feeding, lipid metabolism, and maturity in Ant-
arctic krill, as well as the involvement of an endogenous timing
system in the modulation of seasonal rhythms. We analyse a
unique data set from multiyear laboratory experiments simulat-
ing different latitudinal light regimes (52°S, 66°S, constant dark-
ness) and constant food supply over 2 years. We will test (i) if light
regime stimulates seasonal patterns of growth, feeding, lipid me-
tabolism, and maturity; (ii) if different latitudinal light regimes
cause different seasonal patterns; and (iii) if seasonal patterns
persist under constant darkness indicating an endogenous timing
system.

Materials and methods

Antarctic krill collection and maintenance prior to the
experiments

Antarctic krill were caught with a rectangular mid-water trawl
(RMT 8) on 12 February 2013 (66°47=S, 65°08=E) during the voyage
V3 12/13 of RSV Aurora australis and on 15 January 2015 (65°31=S,
141°23=E) during voyage V2 14/15. The sampling methods are de-
scribed in detail by King et al. (2003). The sampled Antarctic krill
arrived at the Australian Antarctic Division aquarium in Hobart
on 22 February 2013 and on 25 January 2015, respectively. For
acclimation and for keeping of Antarctic krill until the start of the
experiments, they were transferred to 800 L tanks (temperature
0.5 °C) that simulated the natural light regime at 66°S. A detailed
description of the Antarctic krill aquarium facility and the simu-
lated light regime can be found in Kawaguchi et al. (2010).

Photoperiodic-controlled laboratory experiments
Long-term laboratory experiments were conducted over a pe-

riod of 2 years starting in January 2015. Three different light re-
gimes were tested, simulating (1) natural light conditions at 52°S,
(2) natural light conditions at 66°S, and (3) constant darkness (DD)
(Figs. 1a, 1b). For each treatment, 250 Antarctic krill were trans-
ferred from the 800 L acclimation tanks to a 250 L experimental
tank connected to a recirculating chilled seawater system with a
constant water temperature of 0.5 °C. For the initial experimental
set-up, Antarctic krill collected in 2013 were used (tanks A, B, E, F).

However, due to increased mortality in tank A (treatment DD), an
additional tank for treatment DD (tank K) was set up in the begin-
ning of March 2015 using freshly caught Antarctic krill collected
in 2015. The three different light conditions were simulated
within black lightproof plastic containers, one for each experi-
mental tank, using twin fluorescent tubes (Osram L18W/640 Cool
White) with a marine blue gel filter (Marine Blue 131; ARRI Australia Pty.
Ltd.). Light adjustment under treatments 52°S and 66°S was carried
out using a PC-controlled timer and dimming system (winDIM ver-
sion 4.0e; EEE, Portugal) with a maximum light intensity of 100 lx
(photon flux = 1.3 �mol·m−2·s−1) during midday in January (corre-
sponds to 1% light penetration at 30 m depth). According to the
light regime, photoperiod and light-intensity profiles were ad-
justed at the beginning of each month for each treatment. The

Fig. 1. Long-term laboratory experiments at the Australian Antarctic
Division: (a) experimental set-up and tested hypotheses; (b) simulated
light regimes at latitudes 52°S and 66°S. Colour version online.
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simulated light-intensity profiles for each treatment and month
can be found in Supplementary Table S1.1

The food level was held constant to remove that effect from our
experiments because we solely wanted to identify the effect that
light regime had on the seasonal cycle of Antarctic krill. Antarctic
krill were fed daily between the hours of 0830 and 0930 and the
water flow in the tanks was turned off for approximately 2 h to
ensure feeding. The food comprised three live laboratory-cultured
algae (final concentrations were 1.5 × 104 cells·mL−1 of Phaeodactylum
tricornutum Bohlin, 1897, 2 × 104 cells·mL−1 of Geminigera cryophila
(D.L. Taylor and C.C. Lee) D.R.A. Hill, 1991, 2.2 × 104 cells·mL−1 of
Pyramimonas gelidicola McFadden, Moestrup and Wetherbee, 1982),
three types of commercial algal paste (1 × 104 cells·mL−1 of
Thalassiosira weissflogii (Grunow) G. Fryxell and Hasle, 1977 “TW 1200™”,
5.1 × 104 cells·mL−1 of Isochrysis Parke, 1949 “Iso 1800™”, 4.8 ×
104 cells·mL−1 of Pavlova Butcher, 1952 “Pavlova 1800™”; Reed
Mariculture, USA), and two types of prawn hatchery feeds (0.5 g
of FRiPPAK FRESH #1CAR, 0.5 g of FRiPPAK FRESH #2CD; INVE,
Thailand). Antarctic krill under treatment DD were fed in dim red
light. Moults and dead Antarctic krill were removed regularly
from the tanks.

Antarctic krill sampling of 6–10 individuals per tank and month
was carried out in the middle of each month during midday start-
ing in February 2015 (for treatment DD in dim red light). Due to
different rates of mortality in the tanks, the sampling scheme had
to be adjusted during the course of the experiment (Table 1) to
assure sampling over the whole experimental period. Due to the
problem with increased mortality under treatment DD men-
tioned above, we decided to sample tanks A and K sequentially to
ensure the completion of the experiment over the 2-year period.

Live Antarctic krill was inspected under a stereomicroscope and
the sex was determined. Pictures of the carapace and the sexual
organs (female thelycum and male petasma) were taken with a
Leica DFC 400 camera system (Leica Microsystems, Germany). Car-
apace length (tip of the rostrum to posterior notch) and digestive
gland length (longest axis through carapace) were determined
from the pictures within the Leica DFC Camera software version 7.7.1
(Leica Microsystems, Switzerland).

After visual inspection, the sampled Antarctic krill was imme-
diately frozen in liquid nitrogen. Frozen samples were stored at
−80 °C.

The first inspection of the sex ratio within the experimental
tanks revealed that females dominated, with proportions of 71%–
85% per tank.

Growth analysis
Carapace length was used as a proxy for growth in the experi-

ments. Antarctic krill were sampled randomly from each experi-

mental tank; thus, a general trend observed in the carapace
length data are assumed to display the general trend of growth.

The data analysis was performed in RStudio version 1.0.136
(RStudio Team 2016). Before the modelling process, a Pearson’s
product moment correlation was conducted to determine a poten-
tial difference in growth pattern between male and female Antarctic
krill; thus, the need for separate models for each sex. Due to the
strong correlation (r = 0.82, p < 0.001) between males and females,
based on the mean carapace length for each sex across all treat-
ments, data from both sexes were combined (n = 617). To investigate
the long-term trend (variable “time”) and the seasonal variability
(variable “month”) of Antarctic krill growth for each “treatment”
(light regime), a generalized additive mixed model (GAMM) with a
Gaussian distribution was used. An additive model was chosen over
a linear one to resolve the nonlinear relationship of the response and
explanatory variables. The GAMM takes the structure as specified
by Hastie and Tibshirani (1987) and was fitted using the gamm
function in the mgcv package (Wood 2006). Random effects for
“tank” were included in the model to account for potential depen-
dencies between individuals from the same tank. Prior to the
modelling process, temporal autocorrelation was examined using

1Supplementary table is available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjz-2017-0353.

Table 1. Sampling scheme of the long-term experiment.

Month

Treatment Tank 2–6 7–13 14–17 18–19 20–21 22 23 24

52°S E 10* 6* 6* 6* 8
52°S F 10 6 6 6 6 8
66°S B 10* 6*,† 6* 6* 6 8
DD A 10* 6* 6*
DD K 6 6* 6 6 10 16

Note: Given numbers represent sampled individuals per month (n = 617). Carapace length, digestive
gland length, and maturity score from these Antarctic krill (Euphausia superba) were used for the analysis
of growth, feeding, and maturity in this study. For lipid-content analysis, a reduced data set was
analysed.

*In April 2015 (month 4), July 2015 (month 7), October 2015 (month 10), January 2016 (month 13), April 2016
(month 16), and July 2016 (month 19), lipid content of six Antarctic krill per month was analysed.

†In July 2015 (month 7), one additional Antarctic krill was sampled.

Fig. 2. Relationship between maturity score and hours of light in
(a) female and (b) male Antarctic krill (Euphausia superba).

Höring et al. 1205

Published by NRC Research Press

C
an

. J
. Z

oo
l. 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

A
L

FR
E

D
-W

E
G

E
N

E
R

-I
N

ST
IT

U
T

 o
n 

03
/2

3/
20

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 

http://nrcresearchpress.com/doi/suppl/10.1139/cjz-2017-0353


the acf function in R. Time series are often subject to latitudinal
dependencies between data points and not accounting for the
autocorrelation can result in biased estimates of model parameters
(Panigada et al. 2008). As autocorrelation was neither detected, nor
evident in residual analysis during model validation, no temporal
autocorrelation term was included in the final model.

Smoothed terms were fitted as regression splines (variable
“time”), apart for the variable “month”, which was modeled using
cyclic cubic regression splines, setting knots manually between
1 (January) and 12 (December) to account for the circular nature
of this term. Differences in temporal pattern between the three
light regimes (52°S, 66°S, DD) were implemented using the by-
argument of the gamm function, which allows for the creation of
separate smoothers for each level of the treatment factor (light

regime) over the temporal variables “month” and “time”. Hence,
separate parameter estimates for the temporal variables are ob-
tained for each treatment level. To avoid overfitting, the smooth
function of the variable “month” was manually restricted to k = 5.
Model selection was conducted using manual stepwise-backward
selection based on Akaike’s information criterion (AIC) (Akaike
1981). If the addition of a term led to an AIC decrease of >2 per
degree of freedom, or an increase of the adjusted R2, or if the term
was significant, then the term was included in the model. Model
fit was examined by residual analysis.

Feeding analysis
The feeding index (%) was calculated as digestive gland length ×

(carapace length)−1 × 100. Data of males and females were com-

Table 2. Model results showing model statistics for parametric coefficients (estimates, standard errors (SE), z or
t values, and p values), a measure of explained variance of the model (deviance or adjusted R2), and nonparametric
terms where applicable (estimated degrees of freedom (edf), F statistic, and p values).

Model M1a Estimate SE t p Adjusted R2

Intercept 11.67 0.12 101 <0.001 0.39

Treatment 52°S Treatment 66°S Treatment DD

Variable Time Month Time Month Time Month

Smooth (edf) 2.84 1.74 3.56 0.39 3.32 1.8
F 32.8 1.95 20.65 0.15 20.31 2.46
p <0.001 0.003 <0.001 0.13 <0.001 <0.001

Model M2b Estimate SE t p Adjusted R2

Intercept 42.08 0.22 189.8 <0.001 0.64

Treatment 52°S Treatment 66°S Treatment DD

Variable Time Month Time Month Time Month

Smooth (edf) 2.87 5.09 2.55 1.47 3.13 2.79
F 41.42 4.2 92.84 0.39 64.52 1.4
p <0.001 <0.001 <0.001 0.041 <0.001 <0.001

Model M3c Estimate SE t p Deviance (%)

Intercept 17.21 0.77 22.33 <0.001 50.9

Treatment 52°S Treatment 66°S Treatment DD

Variable Time Time Time

Smooth (edf) 3.58 3.82 1.0
F 1.16 14.97 0.05
p 0.3 <0.001 0.82

Model M4d Estimate SE t p Adjusted R2

Intercept 1.43 0.01 134.9 <0.001 0.45

Treatment 52°S Treatment 66°S Treatment DD

Variable Time Month Time Month Time Month

Smooth (edf) 1.0 4.14 1.88 4.07 3.33 2.88
F 6.1 16.0 5.84 7.7 4.58 1.19
p 0.014 <0.001 0.002 <0.001 0.04 <0.001

Model M5e Estimate SE z p AUC

Intercept −6.09 0.78 −7.86 <0.001 0.77
Hours of light 0.49 0.06 7.82 <0.001
Treatment 1.22 1.25 0.98 0.4
Interaction: light × latitude −0.16 0.09 −1.73 0.084

Note: Treatment 52°S refers to simulated light regime at latitude 52°S; treatment 66°S refers to simulated light regime at latitude
66°S; treatment DD refers to constant darkness. Significant p values of explanatory variables are set in boldface type.

aModel M1 is a generalized additive mixed model (GAMM) for carapace length of Antarctic krill (Euphausia superba) over time for each
treatment with random effects for tank.

bModel M2 is a GAMM for feeding index over time for each treatment and random effects for tank.
cModel M3 is a generalized additive model (GAM) for lipid content of females over time for each treatment.
dModel M4 is a negative binomial GAMM for female maturity over time for each treatment with random effects for tank and

autoregressive correlation structure of the order 1.
eModel M5 is a binomial generalized linear mixed model (GLMM) for full maturity of females in relation to hours of light with

interaction term for treatment (52°S and 66°S) and random effects for tank effect. AUC, which is the area under the curve from a
receiver operating characteristic (ROC) curve analysis, serves as an indication of model fit.
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bined because of the strong correlation of monthly mean values
(Pearson’s product moment correlation, r = 0.95, p < 0.001). To
investigate a temporal pattern in the feeding index of Antarctic
krill for each treatment, a GAMM was employed as described
above (section Growth analysis). The smooth function of the vari-
able “time” was manually restricted to k = 6.

Lipid content analysis
Every 3 months from April 2015 to July 2016, six replicate sam-

ples from each treatment were tested for their lipid content. Lip-
ids were extracted from the carapace, which was separated from
the frozen samples with a scalpel on dry ice prior to extraction.
Lipid extraction was performed with dichloromethane:methanol
(2:1, v:v) according to the method described by Hagen (2000). Lipid
content was determined gravimetrically and was calculated in
percentage of dry mass. One data point (sample code “Jan16_E04”)
was removed due to the negative value of lipid content that indi-
cated incorrect measurement for that individual.

Lipid content differed between male and female Antarctic krill
(Pearson’s product moment correlation of pooled monthly mean
values, r = 0.26, p = 0.62); therefore, statistical analysis was per-
formed separately for each sex. Data for males were not sufficient
for robust modelling and only females were considered for this
analysis (n = 83). Only one tank for each time point and treatment

was available, therefore a mixed model to resolve a potential tank
effect could not be employed. For treatment DD, five samples
were available from a second tank, but these were not sufficient
for the inclusion of a random effect. Therefore, a generalized
additive model (GAM) was employed to examine the temporal
pattern of female Antarctic krill lipid content, following the pro-
tocol described in section Growth analysis. The smooth function
of the variable “time” was manually restricted to k = 6. Because the
variable “month” was not significant, it was excluded from the
final model.

Maturity analysis
The maturity stage of the sampled Antarctic krill was assessed

by analysing pictures of the external sexual organs according to
Makarov and Denys (1980) and Thomas and Ikeda (1987). A matu-
rity score was assigned using the method of Brown et al. (2010,
2011). Due to the ordinal characteristic of the maturity scores,
Pearson correlation of monthly mean values could not be per-
formed with the data set. Therefore, we visually inspected the
relationship between maturity score and hours of light in males
and females. Seasonal maturity scores differed between male and
female Antarctic krill (Fig. 2); therefore, statistical analysis was
performed on females only (n = 493), as there were not sufficient
data to allow for modelling males separately. To investigate the

Fig. 3. Estimated smooth terms of the generalized additive mixed model for carapace length of Antarctic krill (Euphausia superba) within light
regime treatments 52°S, 66°S, and constant darkness (DD) with (a) explanatory variable “time” (thin plate regression spline smooth term)
showing the general trend over the whole experimental period and (b) explanatory variable “month” (cyclic smooth term) representing the
seasonal trend over the months of the year. The smoothers (lines) are displayed with 95% confidence intervals (shading); the raw data points for
experimental tanks (shapes) and the p values are also displayed; NS is not significant. In b, the seasonal periods (S, summer; A, autumn; W, winter;
SG, spring) are indicated by vertical dash-dotted lines. Colour version online.
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temporal pattern of maturity of female Antarctic krill for each
treatment, a GAMM was employed as described in section Growth
analysis. Because model residuals were autocorrelated, an auto-
regressive correlation structure of the order 1 was added, which
improved model fit and resolved the dependencies between resid-
uals. Maturity scores are represented as whole numbers and take
values between 3 and 5. Therefore, the GAMM was initially mod-
elled using a Poisson distribution with a logarithmic link function
between predictor and response. Due to overdispersion, a nega-
tive binomial GAMM had to be used. The smooth function of the
variable “time” was manually restricted to k = 6.

To examine differences in the critical photoperiod between lat-
itudinal light regimes 52°S and 66°S, a logistic regression was used.
As only full maturity was investigated, maturity scores <5 were set to
zero and full maturity (score = 5) was set to one in all samples,
resulting in a data set of zeros and ones. The relationship between
full maturity of female Antarctic krill and photoperiod was mod-
elled with a binomial generalized linear mixed model (GLMM)
with a logit function between predictor and response and an
interaction term for factor “treatment” and continuous variable
“hours of light”. The model was fitted using the glmer function
from the lme4 library. To account for dependencies between in-
dividuals from the same tank, random effects for “tank” were
included in the model. Model fit was assessed by constructing a

receiver operating characteristic (ROC) curve using the pROC
package in R, where the area under the curve (AUC) indicates the
goodness of fit (Boyce et al. 2002). Values below 0.7 are considered
poor and 1.0 represents a perfect fit (Cumming 2000). The critical
photoperiod (= photoperiod, when the probability to be fully ma-
ture is 50%) was predicted from the 95% confidence intervals.

Data archiving
Processed data have been uploaded to the database PANGAEA

and can be accessed under https://doi.pangaea.de/10.1594/PANGAEA.
885889.

Results

Growth analysis
Carapace length ranged from 8.1 to 19.02 mm with a mean (±SD)

of 11.71 mm (±1.61 mm) across the whole data set. The GAMM
(model M1; Table 2) revealed significant seasonal and interannual
patterns in growth, which were similar across all treatments
(Figs. 3a, 3b). Shrinkage was observed in the beginning of the
experiments. A significant seasonal variability with shrinkage to-
wards austral winter (June to August) and growth towards austral
summer (December to February) was observed under treatments
52°S and DD (not significant under treatment 66°S).

Fig. 4. Estimated smooth terms of the generalized additive mixed model for feeding index of Antarctic krill (Euphausia superba) within light
regime treatments 52°S, 66°S, and constant darkness (DD) with (a) explanatory variable “time” (thin plate regression spline smooth term)
showing the general trend over the whole experimental period and (b) explanatory variable “month” (cyclic smooth term) representing the
seasonal trend over the months of the year. The smoothers (lines) are displayed with 95% confidence intervals (shading); the raw data points
for experimental tanks (shapes) and the p values are also displayed. In b, the seasonal periods (S, summer; A, autumn; W, winter; SG, spring) are
indicated by vertical dash-dotted lines. Colour version online.
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Feeding
The feeding index data ranged from 25.15% to 66.09% with a

mean (±SD) of 42.00% (±6.58%).
The GAMM revealed significant changes in the feeding index

over time (model M2; Table 2). We observed an increase of the
feeding index throughout the experimental period in all treat-
ments and a final stagnation in treatments 52°S and DD (Figs. 4a,
4b). The seasonal trend differed between treatments. In treatment
52°S, the feeding index strongly increased during the autumn
period (March to May) with a subsequent decrease and stabiliza-
tion during the rest of the year. The seasonal trend in treatment
66°S was very weak and will therefore not be described further. In
treatment DD, the feeding index increased over a longer period
(March to July) and decreased during the rest of the year.

Lipids
The lipid content data of males and females ranged from 2.53%

to 57.75% with a mean (±SD) of 17.04% (±9.12%). The GAM consid-
ering female lipid content data only (model M3; Table 2) revealed
significant differences in temporal variability of lipid content be-
tween the experimental treatments (Fig. 5). Even though the vari-
able “month” was not significant, a resembling seasonal pattern
was observed in the interannual trend under treatment 66°S with
an increase towards austral winter and a decrease towards austral
summer. The increase of lipid content during the second winter
was much stronger than the first winter. No significant patterns
were found for treatments 52°S and DD.

Maturity
Implementing the negative binomial GAMM for female matu-

rity (model M4; Table 2), we found a significant seasonal cycle of
maturity under treatments 52°S, 66°S, and DD with sexual regres-
sion towards austral winter and sexual re-maturation towards
austral spring and summer (Figs. 6a, 6b). Significant interannual
patterns differed between treatments. In treatments 52°S and
66°S, a slight decrease of maturity over the whole study period
was observed. The interannual pattern in treatment DD showed
that sexual regression was only completed during the first winter
of the experiments.

The binomial GLMM (model M5; Table 2) suggests that the vari-
able “hours of light” significantly affects female maturity in treat-
ments 52°S and 66°S. The interaction term between “hours of
light” and “treatment” was marginally not significant. When in-
vestigating the critical photoperiod at the probability of 50%,
differences between the treatments were found (Fig. 7). For
treatment 52°S, the critical photoperiod was estimated as 12.5 h
of light with 95% confidence intervals (11.86, 13.22). For treatment
66°S, an estimate of 14.76 h of light with 95% confidence intervals
(13.3, 16.3) was found.

Discussion
We present findings from the first 2-year laboratory experi-

ments investigating the effect of light regime and the biological
clock on the seasonal cycle of Antarctic krill.

The observed seasonal cycles of growth, feeding, lipid metabo-
lism, and maturity under the simulated latitudinal light regimes
suggest that light regime is an essential zeitgeber for Antarctic
krill. The occurrence of a pronounced lipid cycle under treatment
66°S and the observed differences in critical photoperiods for the
maturation cycle indicate that Antarctic krill may respond flexi-
bly to different latitudinal light regimes. This may represent an
adaptive mechanism to the extreme light regimes in the Southern
Ocean and ensure survival of Antarctic krill in different latitudi-
nal habitats, especially during winter. Moreover, seasonal pat-
terns of growth, feeding, and maturity persisted under constant
darkness indicating the presence of an endogenous timing system
modulating these rhythms. High food supply does not suppress

endogenously driven seasonal rhythms of growth, feeding, lipid
metabolism, and maturity.

The following considerations should be taken into account
when interpreting the findings of this study. Due to limits in space
and costs for the long-term laboratory experiments and variable
mortality rates in the tanks, we had to adjust the experimental
set-up and sampling scheme accordingly. This led to a sampling
design with replication in experimental units over the full study
period for treatment 52°S only. Carapace length, digestive gland
length, and maturity data from treatment 66°S and partly treat-
ment DD, as well as the lipid content data set, may be regarded as
pseudoreplicated (Colegrave and Ruxton 2018) because the repli-
cation in experimental units over the full study period is incom-
plete. We have included the random effect “experimental tank” in
our models, where appropriate, during statistical analysis of the
data to account for a potential tank effect as far as possible. How-
ever, we cannot exclude that differences in tank and replicate
number may have influenced the results of our tests.

To interpret the response of Antarctic krill to constant darkness
over the full 2-year period, we combined data from two different
cohorts of Antarctic krill. The “new” cohort was acclimated to the

Fig. 5. Estimated smooth terms of the generalized additive model
for lipid content in female Antarctic krill (Euphausia superba) within
light regime treatments 52°S, 66°S, and constant darkness (DD).
The explanatory variable “time” (thin plate regression spline
smooth term) is showing the general trend over the whole experimental
period. The smoothers (lines) are displayed with 95% confidence
intervals (shading); the raw data points for experimental tanks (shapes)
and the p value are also displayed; NS is not significant. The seasonal
periods (A, autumn; W, winter; SG, spring; S, summer) are indicated
by vertical dash-dotted lines. Colour version online.
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laboratory conditions for 1 year, before sampling started. Prelim-
inary analysis revealed similar trends in both cohorts under con-
stant darkness, which supports our assumption that both cohorts
responded similarly to the treatment.

Moreover, we decided to solely analyse a reduced data set for
lipid content because frozen Antarctic krill samples from the
2-year experiments are very valuable and can be used for multiple
analyses. The reduced data set is adequate to display the pro-
nounced seasonal lipid cycle under the high latitudinal light re-
gime, but it may be insufficient to test for weaker patterns in the
other treatments. Since potential differences in the male pattern
were indicated and the number of males was too low to conduct a
separate analysis, we decided to analyse females only for lipid
content and maturity.

Moreover, we presume that the observations made in the first
few months of the experiment represent a general period of accli-
mation to the experimental conditions. It may explain the strong
shrinkage, suppressed lipid accumulation, and a general similar-
ity of the data under all treatments in the beginning of the exper-
iments.

Our observation of a seasonal cycle of growth confirms findings
by Brown et al. (2010) that suggest growth is influenced by light
regime, independently of food supply. For the first time, we show
that Antarctic krill’s growth cycle is endogenous and persists un-

der constant darkness. The observed shrinkage in autumn and
winter in this study may be partly related to the maturity cycle.
Females have been observed to shrink during sexual regression
(Thomas and Ikeda 1987) and Tarling et al. (2016) suggested that it
might be explained by morphometric changes due to the contrac-
tion of the ovaries. On the other hand, the shrinkage may reflect
an overwintering mechanism (Quetin and Ross 1991). This is sup-
ported by our observation of significant seasonal shrinkage under
constant darkness where we did not find a pronounced maturity
cycle over the 2-year period.

The seasonal increase of feeding in autumn, which was ob-
served under treatment 52°S, may represent an inherent strategy
to be able to accumulate enough lipid stores for winter (Hagen
et al. 2001; Meyer et al. 2010). These results partly agree with the
short-term study by Teschke et al. (2007) who observed higher
clearance rates under autumn and summer light conditions compared
with constant darkness, suggesting enhanced feeding activity under
light conditions of prolonged day length. The comparability of
both studies may be limited because we solely used a morphomet-
ric index as a measure of feeding activity. The feeding index may
be biased by the strong shrinkage that occurred in the beginning
of our experiments, which could have masked a suppressed feed-
ing activity in the first months. In our long-term study, the sea-
sonal feeding trend under treatment DD resembled the other

Fig. 6. Estimated smooth terms of negative binomial generalized additive mixed model for female Antarctic krill (Euphausia superba) maturity
within light regime treatments 52°S, 66°S, and constant darkness (DD) with (a) explanatory variable “time” (thin plate regression spline
smooth term) showing the general trend over the whole experimental period and (b) explanatory variable “month” (cyclic smooth term)
representing the seasonal trend over the months of the year. The smoothers (lines) are displayed with 95% confidence intervals (shading);
the jittered raw data points for experimental tanks (shapes) and the p values are also displayed. The seasonal periods (S, summer; A, autumn;
W, winter; SG, spring) are indicated by vertical dash-dotted lines. Colour version online.
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treatments with a shift of peak feeding activity towards winter
that may indicate an endogenous control of seasonal feeding ac-
tivity in Antarctic krill. The general increase of feeding index
during the experiments suggests that Antarctic krill is able to
make use of food supply throughout the whole experimental pe-
riod. This observation may also indicate a flexible feeding behav-
iour of Antarctic krill (Atkinson et al. 2002) that has also been
observed in the field in winter (Quetin and Ross 1991; Huntley
et al. 1994; Schmidt et al. 2014).

In our study, we observed a seasonal pattern of lipid content
under treatment 66°S that may be stimulated by the high latitu-
dinal light regime. It resembles the lipid cycle observed in the
field with highest values of lipid content in autumn and lowest
values in early spring (Hagen et al. 2001; Meyer et al. 2010). This is
the first study that shows the possible influence of light regime on
the lipid cycle in Antarctic krill. The accumulation of lipid re-
serves may be adjusted according to the latitudinal light regime,
which may explain the differences observed in the field with
higher lipid stores found in regions at higher latitudes (Schmidt
et al. 2014). We also observed a match of the period of lipid deple-
tion and re-maturation, which supports the assumption that lipid
stores may be used for the maturation process (Teschke et al.
2008).

The effect of light regime on the maturity cycle (Hirano et al.
2003; Teschke et al. 2008; Brown et al. 2011) is confirmed by our
study. The endogenous cycle of maturity under constant darkness
has been observed in short-term experiments before (Thomas and
Ikeda 1987; Kawaguchi et al. 2007; Brown et al. 2011). We show that
this pattern does not persist during the second year under con-
stant darkness and suggest that the zeitgeber photoperiod is re-
quired for the entrainment of the maturity cycle over longer

periods. Results from former experiments (Hirano et al. 2003;
Brown et al. 2011) indicate that Antarctic krill’s maturity cycle may
be entrained by the timing of two contrasting photoperiods (peak
and trough light regimes).

To study potential differences in the physiological response of
Antarctic krill to different latitudinal light regimes, we used the
critical photoperiod (defines the day length when 50% of the pop-
ulation shift from one state to another, here maturity) as an indi-
cator to determine the time of the year that is a turning point
in the seasonal cycle. However, using critical photoperiod, we
cannot give rise to any conclusion regarding the mechanism of
entrainment of these rhythms. We observed that the critical photo-
period for maturity differed between latitudinal light regimes,
being higher under the high latitudinal light regime. An increase
of critical photoperiod with latitude has also been found in insects
in relation to diapause (Bradshaw and Holzapfel 2007; Tyukmaeva
et al. 2011; Hut et al. 2013). Organisms with higher critical photo-
periods have an adaptive advantage under the extreme seasonal
changes of photoperiod at higher latitudes where they have to
prepare early enough to ensure survival during winter. Specifi-
cally, a higher critical photoperiod for maturity implies that Ant-
arctic krill is able to undertake the critical stage of sexual
regression and re-maturation during the time of the year when
photoperiods are longer compared with regions at lower lati-
tudes. In regions with extreme changes of photoperiod and severe
winter conditions, this adaptive mechanism may ensure that Ant-
arctic krill prepares early enough for winter and keeps up energy-
saving mechanisms long enough.

Antarctic krill’s flexibility in adjusting its photoperiodic re-
sponse to a wide range of latitudinal light regimes may be advan-
tageous under future climate change, as a southward migration
trend of Antarctic krill to higher latitudes at the western Antarctic
Peninsula has been reported (Ross et al. 2014). Still, changes in
sea-ice dynamics, such as the timing of sea-ice formation or melt,
may lead to mismatches in the timing of critical life-cycle events
(Clarke et al. 2007). For instance, an earlier phytoplankton bloom
associated with earlier sea-ice melt may influence the survival and
reproductive success of Antarctic krill. Therefore, its potential to
adapt to future environmental changes may also depend on its
genetic flexibility in adjusting its photoperiodic response and the
timing of critical life-cycle events (Bradshaw and Holzapfel 2007).

Our findings support the assumption of a circannual timing
system synchronized by light regime in Antarctic krill (Meyer
2011). The modulation of seasonal rhythms of growth, feeding,
lipid metabolism, and maturity happen independently of con-
stant food supply, indicating an inherent mechanism in Antarctic
krill that regulates the timing of these processes according to
the light regime. Photoperiod may play a significant role in the
initiation of neuroendocrine cascades (on–off mechanism) in
Antarctic krill, as it has been found to be the primary signal initi-
ating diapause, migration, or reproduction in other arthropods
(Bradshaw and Holzapfel 2007). It remains to be clarified if the
photoperiodic time measurement inducing seasonal events in
Antarctic krill is related to the circadian clock (Hut et al. 2013;
Meuti et al. 2015) or represents an independent circannual timing
system. Using light regime as a seasonal zeitgeber makes ecolog-
ically sense because it is a more reliable cue than food availability.
The intensity of the initiated seasonal physiological processes
may be regulated in the field by the interaction with other factors
such as food or temperature. High food quality and quantity were
found to advance growth (Ross et al. 2000; Atkinson et al. 2006)
and maturation (Quetin and Ross 2001) in Antarctic krill. We pro-
pose that this effect is restricted to specific seasonal periods that
are determined by the response of Antarctic krill’s endogenous
timing system to the exposed latitudinal light regime.

This study has high relevance for future modelling approaches
of Antarctic krill densities in the Southern Ocean, especially un-
der the aspect of climate change. Recent Antarctic krill models

Fig. 7. Results from the logistic regressions for the latitudinal light
regime treatments 52°S and 66°S. Estimated trends of the binomial
generalized linear mixed model (lines) are shown with 95% confidence
intervals (shading); jittered raw data points for experimental tanks
(shapes) are also displayed. The horizontal dotted line indicates the
50% probability level for the critical photoperiod (CPP). Colour
version online.
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have focussed on intraspecific food competition (Ryabov et al.
2017) or have been conducted on a conceptual basis (Groeneveld
et al. 2015). The incorporation of light regime into dynamic mod-
els may significantly improve the predictability of growth, energy
budget, and reproduction in Antarctic krill. Recently, a coupled
energetics and moult-cycle model has been developed for Antarc-
tic krill that considered resource allocation based on the seasonal
cycles of growth and maturity (Constable and Kawaguchi 2018).
Further research on the phenology and biological clock of Antarctic
krill will help to better understand its adaptive potential to envi-
ronmental changes.

Conclusion
This study aimed to investigate the impact of light regime on

Antarctic krill’s phenology and the role of its endogenous timing
system. Our observations suggest that light regime affects sea-
sonal cycles of growth, feeding, lipid metabolism, and maturity
under constantly high food supply. Antarctic krill possesses an
endogenous timing system that maintains seasonal rhythms un-
der constant darkness and is most likely entrained by light re-
gime. Varying critical photoperiods under different latitudinal
light regimes indicate that this timing system is flexible, allowing
Antarctic krill to adjust its physiological and behavioural re-
sponses to the extreme light conditions in the Southern Ocean.
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