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Widely rhythmic transcriptome
in Calanus finmarchicus
during the high Arctic summer solstice period

Laura Payton,1,2,10,* Lukas Hüppe,1,2,3 Céline Noirot,4 Claire Hoede,4 Kim S. Last,5 David Wilcockson,6

Elizaveta Ershova,7,8 Sophie Valière,9 and Bettina Meyer1,2,3,*

Summary

Solar light/dark cycles and seasonal photoperiods underpin daily and annual
rhythms of life on Earth. Yet, the Arctic is characterized by several months of per-
manent illumination (‘‘midnight sun’’). To determine the persistence of 24h
rhythms during the midnight sun, we investigated transcriptomic dynamics in
the copepod Calanus finmarchicus during the summer solstice period in the
Arctic, with the lowest diel oscillation and the highest altitude of the sun’s posi-
tion. Here we reveal that in these extreme photic conditions, a widely rhythmic
daily transcriptome exists, showing that very weak solar cues are sufficient to
entrain organisms. Furthermore, at extremely high latitudes and under sea-ice,
gene oscillations become re-organized to include <24h rhythms. Environmental
synchronization may therefore be modulated to include non-photic signals (i.e.
tidal cycles). The ability of zooplankton to be synchronized by extremely weak
diel and potentially tidal cycles, may confer an adaptive temporal reorganization
of biological processes at high latitudes.

Introduction

The day/night cycle structures biological processes from gene expression to physiology and behavior

(Helm et al., 2017; Mermet et al., 2017). Organisms may respond directly to external stimuli (exogenous)

or indirectly (endogenous) via the internal circadian clock. This molecular mechanism enables organisms

to track changes in their environment by using the highly predictable light/dark cycle as a Zeitgeber

(time-giver) although other clocks are known to synchronize to other monotonous cycles (i.e. tidal, lunar,

and annual). Endogenous clocks are of adaptive advantage because they enable organisms to anticipate

and prepare for predictable environmental changes by temporally organizing short- and long-term biolog-

ical processes (Helm et al., 2017). However, it is still unclear how this temporal biological organization is

facilitated in organisms inhabiting extreme photic environments. In high latitude marine environments

without overt day/night cycles such as during the midnight sun period in the Arctic, the sun remains above

the horizon for days or months (Abhilash et al., 2017; Bertolini et al., 2019; Bloch et al., 2013; Schmal et al.,

2020). Entrainment of the circadian clock by light and associated rhythmic gene oscillations is therefore

considered unlikely (Schmal et al., 2020). The persistence of daily rhythms is particularly questionable dur-

ing the summer solstice, which represents the paroxysmal period of midnight sun, with the lowest diel oscil-

lation and the highest altitude of the sun’s position above the horizon (Schmal et al., 2020).

C. finmarchicus is a member of the ‘‘Calanus Complex’’, which constitutes up to 80% of the zooplankton

biomass in the Arctic ocean (Søreide et al., 2008). Copepods provide a crucial trophic link between primary

production and higher trophic levels, with significant impact on biochemical cycles via the biological car-

bon pump (Giering et al., 2014; Sanders et al., 2014; Søreide et al., 2008). Moreover, this key planktonic spe-

cies has been shown to expand its habitat range poleward tracking isotherms as a consequence of climate

change (Reygondeau and Beaugrand, 2011). As a consequence it will be exposed to greater annual photo-

periodic ranges to which it has evolved (Reygondeau and Beaugrand, 2011), with unknown impacts on its

phenology and fitness (Huffeldt, 2020; Saikkonen et al., 2012). A functional circadian clock has been

described in this species under clear light/dark cycles (Häfker et al., 2017), and a recent study revealed

circadian clock gene transcript oscillation in C. finmarchicus in the high Arctic during summer solstice,
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showing that the core molecular clockwork remains synchronized at this time (Hüppe et al., 2020). It is still

unclear whether this clock synchronization leads to daily rhythms.

Copepods are among the important non-model marine invertebrates for which genomic resources are still

limited, one barrier being that many species, including C. finmarchicus, have large genomes, difficult to

sequence (Bron et al., 2011; Choquet et al., 2019; Tarrant et al., 2019a). The de novo transcriptome of

C. finmarchicus (Lenz et al., 2014) has provided a platform to study the expression of rhythmically expressed

mRNAs (Hughes et al., 2017; Li et al., 2015a; Mermet et al., 2017). Indeed, at the molecular level, the endog-

enous clock machinery drives the rhythmic expression of downstream genes whose rhythmic translation

and function ultimately underlie daily oscillations at a cellular and organismal level (Li et al., 2015b).

In order to determine the persistence of daily rhythms during the midnight sun, we investigated in situ daily

transcriptomic rhythms in C. finmarchicus during the summer solstice at a southern (74.5� N) sea-ice-free

and a northern (82.5� N) sea-ice-covered station in the Barents and Arctic Seas respectively.

Results and discussion

Evidence of rhythmic transcriptomes during the summer solstice in the high Arctic

We sampled copepods at 74.5� N (south station, ice-free) and 82.5� N (north station, ice-covered) (hereafter

referred to South and North respectively) on the 30� E longitude, within nine days of the summer solstice

(Figure 1A). During the sampling periods, the sun remained above the horizon all day at both stations but

still showed diel oscillations of altitude (Figure 1B) and photosynthetic active radiation (Hüppe et al., 2020).

A B

C D E

Figure 1. Sampling strategy and results of the rhythmic analysis at South (74.5�N, ice-free) and North (82.5�N, ice-covered) stations

(A) Map with sampled stations South (74.5 �N, ice-free) and North (82.5 �N, ice-covered) and the position of the ice edge at the day of sampling at North.

(B) Solar altitude above the horizon (�, dark yellow) and tidal height (m, dark blue) cycles over the sampling times at each station. Sampling of Calanus

finmarchicus (indicated by black arrows) covered a complete 24h cycle at 4h intervals at each station, from the 30th June at 14-15h to 1st July at 14-15h at South

(9 days after summer solstice), and from the 18th June at 10-11h to the 19th June at 10-11h at North (3 days before summer solstice). For each time point and

station, RNA sequencing was performed on 3 pools of 15 CV stage C. finmarchicus. The time was indicated in hours, local time (UTC +2). C-D-E. Results of

rhythmic transcripts quantification (RAIN algorithm) with an adjusted-p-value cutoff of 0.001.

(C) Number of daily (20h and 24h, mustard yellow) and ultradian (12h and 16h, cyan) transcripts at each station.

(D) Number of rhythmic transcripts (both daily and ultradian) exclusively at South station (‘‘excl. S’’), exclusively at North station (‘‘excl. N00), and at both

stations (‘‘both’’).

(E) Details on rhythmic transcripts at both stations. On the left, rhythmic transcripts at both stations with the same period range of oscillation (‘‘both [sa.]’’):

daily at both station (full mustard yellow) and ultradian at both stations (full cyan). On the right, rhythmic transcripts at both station with a switch of period

range at North (‘‘both [sw.]’’): ultradian transcripts at South switching to daily at North (stripped mustard yellow) and daily transcripts at South switching to

ultradian at North (stripped cyan).
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North experienced lower diel oscillations of the sun’s altitude due to the higher latitude and proximity to

the summer solstice when compared to South. Furthermore North was under snow covered sea-ice, atten-

uating light irradiance and spectral composition of the water column (Wallace et al., 2010). Both stations

exhibited semidiurnal tidal cycles (~12.4h), with slightly higher tidal amplitudes at North. Net sampling

at both stations was performed at 4h intervals over 24 h and the gene expression of C. finmarchicus (CV

stage) was analyzed on the transcriptomic level for each time point and station using RNA sequencing

as described in Payton et al. (2020) (Figure 1B).

Sequencing yielded a depth of 70.4 million reads per sample, optimizing the detection of rhythmic tran-

scripts (Hughes et al., 2017; Li et al., 2015b) in C. finmarchicus which has a large genome (Choquet et al.,

2019). For each station, temporal expression of 76,550 transcripts was obtained. These data were analyzed

for significant periods at 20h and 24h (hereafter termed ‘‘daily’’) and 12h and 16h (hereafter termed ‘‘ultra-

dian’’) periods, assuming that they are the results of an endogenous clock regulation or a direct response to

environmental factors (Helm et al., 2017) (Table 1).

Our analysis yielded a total of 18 045 (23.6% of total transcripts) and 12 634 (16.5% of total transcripts) rhyth-

mically expressed genes at South and North stations respectively (adjusted-p-value < 0.001, Table 1). The

number of rhythmic transcripts achieved a total of 52 175 at South and 45 243 at North, by increasing the

adjusted-p-value cutoff to 0.05, representing 68.2% and 59.1% of the total transcriptome respectively (Ta-

ble 1). Representing the first in situ day-scale transcriptomic rhythm analysis in the Arctic Polar region, the

results revealed a substantial temporal organization at the transcriptomic level in C. finmarchicus during

the time of summer solstice, when daily changes in the sun’s altitude are at a minimum, near the lowest

anywhere on the planet. A comparable study from the Antarctic Polar region shows that about 600 genes

(1.9 % of total transcripts tested) oscillated in Antarctic krill Euphausia superba during an Antarctic summer

day (Pittà et al., 2013). In the current study, with higher sequencing depth and a more powerful sampling

strategy (Hughes et al., 2017; Li et al., 2015b), we show that the number of genes rhythmically transcribed in

C. finmarchicus in the absence of light/dark cycles is comparable to other marine invertebrates (Biscontin

et al., 2019; Connor and Gracey, 2011; Payton et al., 2017; Pittà et al., 2013; Satoh and Terai, 2019; Schnytzer

et al., 2018; Tarrant et al., 2019b) or terrestrial mammals (Mermet et al., 2017) in temperate regions.

Station Period

range

Daily Ultradian Daily Ultradian All

rhythmic

Period (h) 24 20 16 12

South Adj-p <

0.001

9 459

(12.4%)

5 602

(7.3%)

2 533

(3.3%)

451

(0.6%)

15,061

(19.7%)

2 984

(3.9%)

18,045

(23.6%)

Adj-p <

0.01

18,083

(23.6%)

9 930

(13.0%)

6 327

(8.3%)

1 572

(2.1%)

28,013

(36.6%)

7 899

(10.3%)

35,912

(46.9%)

Adj-p <

0.05

25,062

(32.7%)

13,168

(17.2%)

10,728

(14.0%)

3 217

(4.2%)

38,230

(49.9%)

13,945

(18.2%)

52,175

(68.2%)

North Adj-p <

0.001

5 754

(7.5%)

1 268

(1.7%)

4 208

(5.5%)

1 404

(1.8%)

7 022

(9.2%)

5 612

(7.3%)

12,634

(16.5%)

Adj-p <

0.01

12,864

(16.8%)

2 729

(3.6%)

8 719

(11.4%)

3 993

(5.2%)

15,593

(20.4%)

12,712

(16.6%)

28,305

(37.0%)

Adj-p <

0.05

20,155

(26.3%)

4 188

(5.5%)

13,620

(17.8%)

7 280

(9.5%)

24,343

(31.8%)

20,900

(27.3%)

45,243

(59.1%)

Table 1. Detailed results of the rhythmic analysis (RAIN Algorithm) at South (74.5�N, Ice-free) and North (82.5�N,

ice-covered) stations

RAIN results expressed as: number (percentage of total transcripts).

Number of total transcripts = 76,550.

Number (and equivalence in percentage of total transcripts) of transcripts with themost significant results for 24h, 20h, 16h, or

12h period lengths, with an adjusted-p-value cutoff of <0.001, <0.01, and <0.05. Period lengths of 24h and 20h are in the daily

period range. Period lengths of 16h and 12h are in the ultradian period range. ‘‘All rhythmic’’ include daily and ultradian tran-

scripts. Results with adjusted-p-value < 0.001 were selected for this study.
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Figure 2. Rhythmic patterns at South (74.5�N, ice-free) and North (82.5�N, ice-covered) stations and coincidence with environmental cycles

(A and B) Phase distributions of daily (24h and 20h period lengths, adj-p < 0.001) and ultradian transcripts (16h and 12h period lengths, adj-p < 0.001) at South

(A) and North (B), according to RAIN algorithm, expressed as the number of transcripts per cycle at each sampling time (hours). Solar altitude above the

horizon (�, dark yellow) and tidal height (m, dark blue) cycles over the sampling times at each station were plotted in the background.

(C and D). Heatmaps of daily (24h and 20h period lengths, adj-p < 0.001) and ultradian transcripts (16h and 12h period lengths, adj-p < 0.001) at South (C) and

North (D), showing the relative level of expression of rhythmic transcripts along the sampling times (hours), normalized to the median of each transcript.
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Characterization of latitude specific cyclic transcriptome and coincidence with environmental

cycles

Both stations revealed significant daily and ultradian cycling transcripts (adjusted-p-value < 0.001, Table 1

and Figure 1C). This result corroborates with the bimodal oscillations of circadian clock gene transcripts

recently described by Hüppe et al. (2020) and validated by the current transcriptomic analysis (Figure S1),

characterized by both daily and ultradian rhythms. Interestingly, a lower number of daily transcripts were

detected at North, where they were 2.1 times less numerous than at South (Table 1 and Figure 1C) which

may be attributable to lower diel oscillations of solar altitude and the presence of sea-ice cover, and cor-

roborates with the lower amplitude of daily oscillation of clock, period 1 and timeless atNorth (Hüppe et al.,

2020). To increase understanding of daily transcripts at both stations, phase of gene expression with that of

the environmental cycles was determined, i.e. the time of peaks of expression during the reporting period

(Figures 2A–2D). Differences in phase of daily transcripts was observed between South (Figures 2A and 2C)

and North (Figures 2B and 2D). While daily transcripts at South could be defined as ‘‘nocturnal’’, as most

peak expressions occurred when solar irradiance reached its daily minimum between 22h and 7h, most

of the daily transcripts at North peaked between 14h and 23h, when solar altitude and irradiance was

decreasing (Figures 2A–2D). A consistent phase shift of expression between stations was observed in

the expression of the positive regulators of the circadian clock: clock peaking at 6h at South and 19h at

North; cycle peaking at 22h at South and 19h at North (Hüppe et al., 2020). In addition to being more

numerous at South, the proportion of daily transcripts with high amplitudes (1.5–5; >5) is greater at South

than at North (Figure 2E).

In contrast to the daily transcripts, an increase of ultradian transcripts was observed at North, where they

were 1.9 times more numerous than at South (Table 1 and Figure 1C). Thus, the rhythmic transcriptomes at

South and North were characterized by different daily/ultradian ratios: 83.5% were daily and 16.5% were

ultradian at South, while 55.6% were daily and 44.4% were ultradian atNorth (Table 1 and Figure 1C). These

ratios reflect the pattern of circadian clock gene transcripts, for which an increase of ultradian oscillations

was clearly observed atNorth (Hüppe et al., 2020). Ultradian transcriptomic rhythms have been increasingly

reported over the past decade in a wide range of species (Ananthasubramaniam et al., 2018; Biscontin

et al., 2019; Connor and Gracey, 2011; Hughes et al., 2009; Payton et al., 2017; Pittà et al., 2013; Satoh

and Terai, 2019; Schnytzer et al., 2018; Tarrant et al., 2019b; Westermark and Herzel, 2013; Zhu et al.,

2018). These oscillations often cycle at different harmonics of the circadian rhythm, and among these,

the ~12h oscillation is most prevalent (Ananthasubramaniam et al., 2018; Hughes et al., 2009; Westermark

and Herzel, 2013; Zhu et al., 2018). Further, ultradian transcriptomic oscillations of ~12.4h, also called (circa)

tidal oscillations, are observed in marine organisms under the influence of semidiurnal tidal cycles (Connor

and Gracey, 2011; Mat et al., 2020; Satoh and Terai, 2019; Schnytzer et al., 2018). Here, ultradian transcripts

phased to tides at both South and North, with two different phase patterns depending on the station (Fig-

ures 2A–2D). At South, most of the ultradian transcripts showed a peak of expression with low tides (Figures

2A and 2C), while at North, most of the ultradian transcripts showed a peak of expression with high tides

(Figures 2B and 2C). In contrast to circadian transcripts, the proportion of ultradian transcripts with high

amplitudes (1.5–5; >5) is equivalent to (16h transcripts) or greater (12h transcripts) at North than at South

(Figure 2E).

To further compare South withNorth, we analyzed if the same genes were rhythmically transcribed at both

stations. The results showed that a large proportion of the total rhythmic transcripts (adjusted-p-value <

0.001) were specific to each station (67.1% at South; 52.9% at North), with 12 101 transcripts being exclu-

sively rhythmic at South and 6 690 exclusively rhythmic atNorth (Figure 1D). These station-specific rhythmic

transcripts might reflect differences between ice-free (South) and ice-covered (North) ecosystems, leading

to differential physiological requirements. For example, in ice-covered areas where phytoplankton in the

water column is scarce, the sea-ice algae community is a critical food source for copepods (David et al.,

2015; Søreide et al., 2008; 2013; Wallace et al., 2010), the nutritional quality of which differs to phyto-

plankton blooms in ice-free waters (Falk-Petersen et al., 1998). In contrast, the 5 944 transcripts that

Figure 2. Continued

Lowest levels of expression were in blue, highest levels of expression were in yellow, and the transcripts were ordered by phases. The numbers of

transcripts for each period length and station were indicated on the left of heatmaps. The time was indicated in hours, local time (UTC +2).

(E) Amplitude ranges distribution of daily (24h and 20h period lengths, adj-p < 0.001) and ultradian transcripts (16h and 12h period lengths, adj-p < 0.001) at

South (green) andNorth (blue), expressed as percentage of rhythmic transcripts per period length and station. An amplitude of 0.5 means that the difference

between the minimal and the maximal levels of expression is equal to 0.5 times the minimal level.
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Figure 3. Rhythmic biological processes of interest

cellular response to stimulus (GO:0051716), neurotransmitter metabolic process and transport (GO:0042133, GO:0006836), DNA repair (GO:0006281),

protein phosphorylation and ubiquitination (GO:0006468, GO:0016567), oxidation-reduction process (GO:0055114), response to oxidative stress

(GO:0006979), carbohydrate metabolic process (GO:0005975), lipid metabolic process (GO:0006629) and proteolysis (GO:0006508).

(A and B) Details of the rhythmic analysis per biological process. For each biological process, the number of transcripts ‘‘excl. S’’ (transcripts exclusively

rhythmic at South), ‘‘excl. N’’ (transcripts exclusively rhythmic at North), ‘‘both (sa.)’’ (transcripts rhythmic at both stations, with the same period range) and

‘‘both (sw.)’’ (transcripts rhythmic at both stations, with a switch of period range atNorth)’’ is detailed. For each category, the ultradian transcripts were shown

in cyan (full or striped) and the daily transcripts were shown in mustard yellow (full or striped). ‘‘both (sw.)’’ transcripts were shown as expressed at North.
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were rhythmic in animals sampled at both stations, could reflect common physiological requirements (Fig-

ure 1D). Of these genes, about half showed distinct changes in their period (Figure 1E) with most (2 388)

changing from daily at South to ultradian at North. We propose therefore, that the pattern of temporal

regulation of common physiological processes is specific to each environment and that gene expression

is re-organized according to an under-ice habitat.

Rhythmic biological processes of interest

Gene ontology (GO) analysis revealed that rhythmic transcripts at both latitudes were particularly common

to metabolic and cellular process, signaling, response to stimuli, localization or biological regulation (Fig-

ures S2A, S3A, and S4A). To gain a better understanding of the rhythmic biology inC. finmarchicus, nine key

biological processes particularly observed in rhythmic transcripts (Table S1) were selected based on enrich-

ment analysis (results are presented Figures S2B, S3B, and S4B) to get a more detailed insight into their

temporal regulation (Figure 3). Examples of genes from functional groups presented in Figure 3 are pro-

vided in Table S2 and Figure 4. By analyzing the rhythmic status of genes involved in these nine key biolog-

ical processes (Figure 3), we noted that: (1) a combination of daily and ultradian transcripts were observed

for each process at both South and North, rather than daily- and ultradian-specific processes; (2) an in-

crease of ultradian oscillations across all biological processes examined, except ‘‘DNA repair’’, occurred

atNorth, explained by both station-specific and common rhythmic transcripts switching from daily at South

to ultradian at North and; (3) the time of peaks of expression (phases) according to daily or tidal cycles is

specific to each station.

Rhythmic patterns of ‘‘cellular response to stimulus’’ supported the observation of the persistence of a daily

rhythmic environmental stimulus at both stations, despite the sun always staying above the horizon. Inter-

estingly, over the common rhythmic transcripts between both stations, 128 present daily oscillations at

both stations (Figure 3A, both (sa.), full mustard yellow), while 87 switch from daily oscillations at South

to ultradian ones at North (Figure 3A, both (sw.), striped cyan). Finally, while 87% of rhythmic transcripts

associated to ‘‘cellular response to stimulus’’ have daily oscillations at South, with peaks of expression be-

tween 22h and 7h (Figure 3C), the proportion of daily transcripts decrease to 56% at North, peaking be-

tween 10h and 23h (Figure 3E). In parallel, the proportion of ultradian transcripts increases from 13% at

South (Figure 3C) to 44% in the North (Figure 3E), with clear peaks of expression around high tides at

this station (North) (Figure 3E). These results support the idea of the increasing response to an ultradian

environmental stimulus (e.g. tides) atNorth. This trend is even more accentuated in the rhythmic transcrip-

tion of genes involved in ‘‘neurotransmitter metabolic process and transport’’ (Figures 3B, 3D, and 3F), for

which the proportion of ultradian transcripts is more evident than the one of daily transcripts at North.

Indeed, the daily/ultradian ratio differs from 89%/11% at South (Figures 3D) to 42%/58% at North (Fig-

ure 3F). Neurotransmitters are involved in a wide range of processes comprising temporal organization,

such as photic entrainment of the circadian clock, or transmission of clock outputs such as the circadian

food anticipatory activity (Golombek and Rosenstein, 2010; Gotow and Nishi, 2008; Patton and

Mistlberger, 2013). Among rhythmic transcripts involved in ‘‘neurotransmitter metabolic process and trans-

port’’ in this study, 3 isoforms of Sodium-dependent nutrient amino acid transporter 1 (NAAT1) are iden-

tified (Figures 4A and Table S2B). This amino acid/sodium cotransporter that promotes absorption of

essential amino acids has been shown to be expressed with a daily rhythm in circadian neurons of

Drosophila (Abruzzi et al., 2017). In our study, one isoform of NAAT1 is rhythmically expressed exclusively

at South, with a daily rhythm and a peak of expression at 6-7h (Figure 4A and Table S2B). A second isoform

shows ultradian oscillations at both latitudes, but showing a phase shift, the peak of expression being at

rising tides at South and around high tides at North (Figure 4A and Table S2B). Finally, a third isoform of

NAAT1 is also rhythmically expressed at both latitudes, but with a daily rhythm at South and an ultradian

rhythm at North (Figure 4A and Table S2B). This result clearly illustrates the environment-dependent mod-

ulation of gene expression in terms of period and phase of rhythmic expression. In contrast, the ‘‘DNA

repair’’ function, widely described to be under the control of the circadian clock in other species (Borgs

et al., 2009), showed the majority of daily oscillations at both South and North. This result suggests that

Figure 3. Continued

(C–F) Heatmaps of all rhythmic transcripts per biological process at South (C and D) and at North (E and F). The level of expression of each transcripts was

normalized to the median and transcripts were ordered by phases. Lowest levels of expression were in blue, highest levels of expression were in yellow. The

daily transcripts ‘‘D’’ were at the top and the ultradian transcripts ‘‘U’’ at the bottom. The time was indicated in hours, local time (UTC +2). 12h corresponded

to the highest and 00h to the lowest solar altitude of the day at each station, ‘‘HT’’: high tide’’, ‘‘LT’’: low tide.

See also Tables S1 and S2.
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A

B

C

D

E

Figure 4. Examples of rhythmic transcripts involved in key biological processes

Expression profiles of genes involved in neurotransmitter metabolic process and transport (GO:0042133, GO:0006836) (A), oxidation-reduction process

(GO:0055114) (B), carbohydratemetabolic process (GO:0005975) (C), lipidmetabolic process (GO:0006629) (D) and proteolysis (GO:0006508) (E) at the South

ice-free station (green) and the North ice-covered station (blue). ‘‘D’’ and ‘‘U’’ correspond to significant daily or ultradian rhythm (adj-p < 0.001), the color

corresponding to the station. ‘‘HT’’: high tide, ‘‘LT’’: low tide, the color corresponding to the station. Details about rhythmic transcripts presented in this

Figure are available Table S2.
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the increase of ultradian oscillations at North may not be beneficial for all functions. However, despite the

general common daily pattern for this function, a clear phase shift is noted between stations, with peaks of

expression between 22h and 7h at South (Figure 3C), and between 10h and 23h at North (Figure 3E), high-

lighting again a clear environment-specific modulation of cellular processes. While chronobiological data

are still scarce in marine organisms, some DNA repair genes have been identified to peak during nighttime

in the mussel Mytilus californiaunus under temperate region’s natural environment simulation in the labo-

ratory (Connor andGracey, 2020). Another function strongly represented by rhythmic transcripts is ‘‘protein

phosphorylation and ubiquitination’’. The role of posttranscriptional mechanisms in rhythmic regulatory

processes is increasingly demonstrated (Mauvoisin et al., 2015; Mermet et al., 2017). Thus, rhythmic tran-

scripts involved in ‘‘protein phosphorylation and ubiquitination’’ suggests continued cyclic regulation at

the proteomic level, with again a clear increase of the proportion of ultradian patterns at North. We also

show clear rhythms in ‘‘oxidation-reduction process’’ and ‘‘response to oxidative stress’’ at both stations.

The redox status of organisms involved in many cellular reactions, from respiration to metabolism, appears

to be widely rhythmic in all species and all these functions are related to the endogenous clock (Biscontin

et al., 2019; Eckel-Mahan and Sassone-Corsi, 2009; O’Neill et al., 2015; Pittà et al., 2013; Putker and O’Neill,

2016). While daily oscillations of redox markers are observed in terrestrial organisms, tidal oscillations, such

as cytochrome oxidase subunits expression, have also been observed in marine organisms such as the crus-

tacean Eurydice pulchra (O’Neill et al., 2015). In the current study, the increase of ultradian regulation at

North can be illustrated by the switch of the rhythmic expression of cytochrome c oxidase subunit 2,

from daily at South to ultradian at North (Figure 4B and Table S2E). However, ultradian oscillations are

not limited to the North station, as illustrated by the ultradian expression of an isoform of Peroxire-

doxin-6 at both stations, peaking just after low tides at South, and just after high tides at North. Oxida-

tion-reduction cycles of peroxiredoxin proteins have been thought to constitute a universal marker for

circadian rhythms in all domains of life (Edgar et al., 2012). While daily transcription of peroxiredoxins

have been shown in the Antarctic krill Euphausia superba (Pittà et al., 2013), overoxidation of peroxiredoxin

follows a circatidal pattern in E. pulchra (O’Neill et al., 2015). On the other hand, one of the isoforms of

Catalase, an important antioxidant enzyme (Nandi et al., 2019), or NADPH-cytochrome P450 reductase,

an essential component for the function of many enzymes including cytochrome P450 (Weng et al.,

2005), exhibit a daily rhythm at both stations, revealing the intertwining of daily and ultradian rhythms of

oxidation-reduction processes observed in this study. Finally, we highlighted the temporal expression of

transcripts involved in key metabolic processes for energy use and storage in the active CV stage copepo-

dites (Häfker et al., 2018): i.e ‘‘carbohydrate metabolic process’’, ‘‘lipid metabolic process’’ and ‘‘proteol-

ysis’’ (Figure 3). Most of the common rhythmic transcripts (both [sa.] and both [sw.]) associated to these

key metabolic functions switch from daily oscillations at South to ultradian ones at North (Figures 3A

and 3B). Moreover, there is a large proportion of ultradian transcripts in genes exclusively rhythmic atNorth

(excl. N), while the daily transcripts are in the majority in genes exclusively rhythmic at South (excl. S) for

these functions (Figures 3A and 3B). A clear change of the daily/ultradian ratio for rhythmic transcripts asso-

ciated to these key metabolic processes is observed between South (Figures 3C and 3D) and North (Fig-

ure 3E and 3F). Indeed, while daily transcripts are in the majority at South, representing 84%, 76%, and

86% of rhythmic genes involved in ‘‘carbohydrate metabolic process’’, ‘‘lipid metabolic process’’, and ‘‘pro-

teolysis’’, respectively (Figure 3C and 3D); the proportion is much more nuanced at North, where the ultra-

dian transcripts even become the majority, representing respectively 69%, 52%, and 52% of rhythmic

transcripts at this station (Figure 3E and 3F). These results indicate day-scale oscillations in energetic

demands and nutrient supply, with clear modifications of period and phase of oscillations according to sta-

tions (Figures 3C, 3D, 3E, and 3F). For instance, isoforms of Glucose-6-phosphate-1-dehydrogenase (car-

bohydrate metabolic process, Figure 4C and Table S2G), identified to be under the control of the circadian

clock in Drosophila (McDonald and Rosbash, 2001), and Leukotriene A-4 hydrolase (proteolysis, Figure 4E

and Table S2I), oscillate with a daily pattern at both stations, with clear phase shifts (peaking respectively at

6-7h and 2-3h at South and at 22-23h and 18-19h at North). In contrast enolase transcription is ultradian at

both stations (Figure 4C and Table S2G), with again a clear phase shift (peaking after low tides at South and

at high tides atNorth). This gene encodes for a protein involved in glycolysis and has been shown to have a

peak of expression during the night in the Antarctic krill in the lab under L/D exposure (no tides), corre-

sponding to the high level of activity and oxygen consumption in this species in the field (Biscontin

et al., 2019). Finally, isoforms of Trehalase (Figure 4C and Table S2G), Calpain-7, Carboxypeptidase B

and Aminopeptidase (Figure 4E and Table S2I), involved in carbohydrate metabolic processes and prote-

olysis, give a clear illustration of the switch of period range according to stations, from daily oscillations at

South to ultradian ones atNorth. In summary our results highlight plasticity of the rhythmic transcriptome in
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C. finmarchicus suggesting that the widely rhythmic transcriptome is tuned to the cyclic environmental con-

ditions of the prevailing habitat.

Persistent cycling of C. finmarchicus transcriptome during midnight sun

In high latitude marine environments without overt day/night cycles, entrainment of the circadian clock by

light and associated rhythmic gene oscillations is considered unlikely (Bertolini et al., 2019; Schmal et al.,

2020). However, even during months of permanent darkness or illumination, Polar marine regions remain

rhythmic environments, with a persistence of the sun’s oscillations below or above the horizon (Cohen et al.,

2020; Hobbs et al., 2018; Wallace et al., 2010). Here, the widely daily rhythmic gene oscillations observed at

two high Arctic latitude stations during summer solstice, illustrate that subtle daily changes of light intensity

or quality are sufficient to synchronize daily molecular rhythms in the key zooplanktonic species

C. finmarchicus, which is consistent with the high levels of visual acuity recorded in this species (Båtnes

et al., 2015).

Some studies show that several Arctic species exhibit daily activity rhythms in the absence of diel light cy-

cles, while others become arrhythmic proposing that the absence of rhythms could be beneficial in polar

environments (Abhilash et al., 2017; Bertolini et al., 2019; Bloch et al., 2013). In zooplankton, the most

described daily rhythm is the behavior of diel vertical migration (DVM) to the surface at night in order to

balance the need to feed close to the surface against the accompanying risk of predation by visually hunt-

ing predators (Häfker et al., 2017). DVM has been frequently observed during autumn and spring in the high

Arctic when the diel light/dark cycle is present (Dale and Kaartvedt, 2000; Fortier et al., 2001). However,

data for synchronized DVM during the Arctic midnight sun are contrasting (Blachowiak-Samolyk et al.,

2006; Cottier et al., 2006; Dale and Kaartvedt, 2000; Fortier et al., 2001; Wallace et al., 2010). While the

persistence and the purpose of maintaining DVM during this period is under debate, the multitude of daily

transcripts observed in this study, including those involved in circadian clockmachinery, carbohydrate/lipid

metabolism, and proteolysis, suggests that a daily temporal organization at the transcriptomic level could

be an advantage for copepods, whether ex- or intrinsic (Abhilash et al., 2017).

However at extremely high latitudes and under sea-ice, gene oscillations become re-organized to include

<24 h (ultradian) gene cycles. Entrainment of the circadian (or other) clock(s) and clock-controlled genes

may therefore be modulated to include other, non-photic signals (i.e. tidal cycles) (Connor and Gracey,

2011; Mat et al., 2020; Satoh and Terai, 2019; Schnytzer et al., 2018). Interestingly, some genes belonging

to eukaryotic translation initiation factors and heat shock proteins are shown to be ultradian in this study,

while these genes families have been shown to present conserved harmonic oscillations (ultradian rhythms

generated by the circadian clock) between fungi and mammals (Ananthasubramaniam et al., 2018) (Table

S3). Here, we propose that ultradian rhythms in C. fimarchicusmay be entrained by ambient tidal cues such

as potential current reversal, food availability, turbulence, salinity or temperature cycles caused by the tides

(Massicotte et al., 2020; Oziel et al., 2019; Tessmar-Raible et al., 2011). While ultradian oscillations are also

observed at the South sea-ice-free station, under-ice currents atNorth station could lead to important tidal

cycles of food availability (from ice algae), salinity or temperature (Massicotte et al., 2020; Oziel et al., 2019).

Thus, the tidal reorganization at North may facilitate for example ingestion rate (Conover et al., 1986; Ibá-

ñez-Tejero et al., 2018; Petrusevich et al., 2020; Schmitt et al., 2011), as suggested by the increase of ultra-

dian oscillations of key metabolic processes in copepods at this station.

The bimodal aspect of the C. finmarchicus transcriptomes, presenting both daily and ultradian oscillations,

as well as a differential daily / ultradian ratio between stations, were in accordance with the bimodal oscil-

lations of circadian clock transcripts (Figure S1, Hüppe et al., 2020). This corroborated the hypothesis of

Hüppe et al. (2020) that the circadian clock could be functional during summer solstice at high latitudes

and, as proposed in other species (Enright, 1976; Tran et al., 2020), could be synchronized by both daily

and tidal environmental cycles, with a balance between one or the other depending on their relative impor-

tance and the associated advantages to synchronize biological processes accordingly, relevant to each

ecosystem. Moreover, the station-specific phases of daily and ultradian transcripts compliment the idea

of the ability to adapt to site-specific changes of risks and opportunities related to the daily and tidal envi-

ronmental cycles. Thus, the observed plasticity of rhythmic transcriptomes could be of high adaptive

advantage to deal with the specificity of each habitat, and could allow C. finmarchicus to adapt to the

high Arctic environmental cycles, unrestrained by photoperiod (Huffeldt, 2020; Reygondeau and Beau-

grand, 2011; Saikkonen et al., 2012). Finally, daily and ultradian oscillations of key metabolic processes
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strongly suggest the persistence of feeding and respiration rhythms during midnight sun, with potentially

important ecological consequences regarding trophic interactions and biogeochemical processes (Gier-

ing et al., 2014; Sanders et al., 2014).

Limitations of the study

As discussed above, in a context of field study, organisms are exposed to environmental cycles. Thus we

cannot rule out that the observed rhythmicity stems from a direct response to light, rather than a clock-

controlled regulation. However the consistency between the circadian clock genes expression and the

transcriptomic patterns highly suggests a functional clock. Moreover, the endogenous clock(s) controls

different layers of regulation to provide robust timing cues at the cellular and tissue level. Here we identi-

fied temporal patterns in periodic gene expression by measuring mRNA accumulation. However, the tem-

poral regulation is a dynamic process, including regulation of posttranscriptional mechanisms such as

translational efficiency or protein accumulation (Mermet et al., 2017). Thus, further studies at the proteomic

or physiological levels are necessary to decipher the exact timing of key biological processes mentioned in

this study.
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Hüppe, L., and Meyer, B. (2018). Calanus
finmarchicus seasonal cycle and diapause in
relation to gene expression, physiology, and
endogenous clocks. Limnol. Oceanogr. 63, 2815–
2838.

Helm, B., Visser, M.E., Schwartz, W., Kronfeld-
Schor, N., Gerkema, M., Piersma, T., and Bloch,
G. (2017). Two sides of a coin: ecological and
chronobiological perspectives of timing in the
wild. Philos. Trans. R. Soc. B Biol. Sci. 372,
20160246.

Hobbs, L., Cottier, F.R., Last, K.S., and Berge, J.
(2018). Pan-Arctic diel vertical migration during
the polar night. Mar. Ecol. Prog. Ser. 605, 61–72.

ll
OPEN ACCESS

12 iScience 24, 101927, January 22, 2021

iScience
Article

http://refhub.elsevier.com/S2589-0042(20)31124-X/sref1
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref1
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref1
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref1
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref2
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref2
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref2
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref2
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref2
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref2
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref3
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref3
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref3
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref3
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref5
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref5
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref5
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref5
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref5
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref6
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref6
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref6
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref6
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref6
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref7
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref7
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref7
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref7
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref7
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref7
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref8
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref8
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref8
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref8
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref8
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref9
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref9
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref9
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref9
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref9
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref9
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref9
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref10
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref10
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref10
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref10
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref12
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref12
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref12
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref12
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref12
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref12
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref13
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref13
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref13
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref13
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref13
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref14
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref14
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref14
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref14
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref15
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref15
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref15
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref15
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref16
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref16
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref16
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref16
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref16
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref17
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref17
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref17
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref17
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref18
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref18
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref18
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref18
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref18
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref19
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref19
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref19
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref20
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref20
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref20
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref20
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref20
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref21
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref21
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref21
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref21
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref22
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref22
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref22
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref22
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref22
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref23
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref23
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref23
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref23
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref23
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref25
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref25
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref25
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref26
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref26
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref26
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref26
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref27
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref27
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref27
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref27
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref29
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref29
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref29
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref29
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref29
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref29
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref30
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref30
http://refhub.elsevier.com/S2589-0042(20)31124-X/sref30


Huffeldt, N.P. (2020). Photic barriers to poleward
range-shifts. Trends Ecol. Evol.

Hughes, M.E., DiTacchio, L., Hayes, K.R.,
Vollmers, C., Pulivarthy, S., Baggs, J.E., Panda, S.,
and Hogenesch, J.B. (2009). Harmonics of
circadian gene transcription in mammals. PLoS
Genet. 5, e1000442.

Hughes, M.E., Abruzzi, K.C., Allada, R., Anafi, R.,
Arpat, A.B., Asher, G., Baldi, P., de Bekker, C.,
Bell-Pedersen, D., Blau, J., et al. (2017).
Guidelines for genome-scale analysis of
biological rhythms. J. Biol. Rhythms 32, 380–393.
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Transparent Methods

EXPERIMENTAL MODEL AND SUBJECTS DETAILS

All animal work was conducted in accordance with local legislation. All investigations were performed on CV

life stages of the copepod Calanus finmarchicus (Gunnerus, 1770). Copepods were sorted for species (C.

finmarchicus) and stage (CV stage copepodites) at 2˚C under a stereo microscope using morphological

characteristics. To distinguish C. finmarchicus from its closely related Arctic congener C. glacialis, the redness

of the antenna, which has been shown to be a good indicator in the regions, was particularly used (Nielsen et

al., 2014). Morphological identification method was validated by molecular species identification on a subset of

samples from the same stations. DNA was extracted from individual copepods using the HotShot method

(Truett et al., 2000), and the species-specific nuclear insertion/deletion (InDel) marker G-150 was amplified

using a modified protocol from Smolina et al. (2014). Identification was done by accessing the size of the

resulting amplicon via electrophoresis on a 2% agarose gel. 99 % of the individuals identified as C.

finmarchicus by the morphological identification method were also identified as C. finmarchicus by the

molecular identification method (n=305 individuals).



METHOD DETAILS

Study sites characteristics

Sampling was conducted during Cruise JR17006 of the RRS James Clark Ross in summer 2018 at two

stations along a latitudinal gradient. The South station was located in the southern Barents Sea (B13; 74.5 °N,

30 °E) and the North station in the Nansen Basin (JR85; 82.56 °N, 30.85 °E) (Figure 1). Water depth at South

was 360 m and at North was 3700 m. During sampling times, the ice edge was located at about 81° to 82° N,

roughly following the shelf slope north of Svalbard, thus South station (74.5 °N) was ice-free, whereas North

station (82.56 °N) was located within the ice cover. The sun’s altitude was always above the horizon but still

showed diel oscillations of altitude above the horizon from 7.7 ° at midnight to 38.6 ° at midday at South, and

from 16 ° at midnight to 30.9 ° at midday at North, at the times of sampling (local time, UTC +2). Sites were

exposed to semidiurnal tide regimes, i.e., 2 tidal cycles per day, with a maximum amplitude of ± 0.36 m at

South and ± 0.47 m at North at times of sampling. Atmospheric PAR measurements and additional physical

characteristics of the sampling sites are available in the publication of Hüppe et al. (2020).

Field sampling time series

The sampling strategy was specifically designed for the detection of rhythmic transcripts. Sampling covered a

complete 24h cycle at 4h intervals, resulting in seven time points per station. At each station, sampling was

performed in similar times frames: 14-15h, 18-19h, 22-23h, 2-3h, 6-7h, and 10-11h (all times noted in local

time (UTC+2)). Sampling at South station started on 30th June (9 days after the summer solstice) at 14-15h

and ended on 1st July at 14-15h. Sampling at North station started on 18th June (3 days before the summer

solstice) at 10-11h and ended on 19th June at 10-11h. Field sampling interval was conducted on a near semi-

lunar cycle (12 days apart) to ensure tidal and solar cycles were in phase. At each timepoint the water column

was sampled from 200 m to the surface with vertical hauls of a WP2 plankton net (opening ⌀: 57 cm, net

length: 236 cm, mesh size: 200 µm) with a meshed bucket cod end (mesh size: 200 µm) at a speed of 0.5

m*s-1. Transferring the animals from the net into the stabilization solution was done within less than 12



minutes for all samplings. A 12h period of incubation at 2 - 4˚C was allowed to soak the samples thoroughly

with the RNAlater stabilization solution (Ambion, UK) before they were transferred to -80˚C for further

transport and storage.

RNA extraction

Copepods were sorted at 2˚C and for each timepoint and station, 3 replicates of 15 C. finmachicus CV were

analyzed (315 individuals per station in total). Each replicate was homogenized in 600 µl of TRIzol® reagent

(ThermoFisher Scientific, USA) with a Precellys® 24 Tissue Homogenizer (Bertin Instruments, France). For

RNA extraction, a Phenol/Chloroform based single-step extraction in combination with a spin column based

solid phase extraction (Direct-zol™ RNA MiniPrep Kit, Zymo Research, USA) was used. Genomic DNA was

removed by DNase I digestion on column as part of the RNA extraction kit and total RNA was eluted in ultra-

pure water. Total RNA samples were stored at -80°C and send to GeT-PlaGe core facility on dry ice. RNA

purity and quantity was checked on a NanoDrop 8000 spectrophotometer (ThermoFisher Scientific, USA) and

RNA integrity was checked using a Fragment Analyzer (Advanced Analytical Technologies, Inc., Iowa, USA;

RNA Kit (15nt) Standard Sensitivity, Agilent).

RNA sequencing

RNAseq was performed at the GeT-PlaGe core facility, INRA Toulouse. The 42 RNA-seq libraries were

prepared according to Illumina’s protocols using the Illumina TruSeq Stranded mRNA sample prep kit to

analyze mRNA. Briefly, mRNA were selected using poly-T beads. Then, RNA were fragmented to generate

double stranded cDNA and adaptors were ligated to be sequenced. 11 cycles of PCR were applied to amplify

libraries. Library quality was assessed using a Fragment Analyser (Advanced Analytical Technologies, Inc.,

Iowa, USA) and libraries were quantified by qPCR using the Kapa Library Quantification Kit (Roche). RNA-seq

experiments have been performed on a NovaSeq S4 lane (Illumina, California, USA) using a paired-end read

length of 2x150 pb with the Illumina NovaSeq Reagent Kits.



RNA sequencing bioinformatics analysis

Details on bioinformatics analysis are available in the article by Payton et al., 2020. Sequenced reads were

aligned by BWA MEM (http://bio-bwa.sourceforge.net/bwa.shtml) to the reference de novo transcriptome of

Calanus finmarchicus (Lenz et al., 2014) and quantification matrix was generate thanks to samtools idxstat (Li

et al., 2009) results. The percentage of mapped (single) reads is 95.5 ± 0.001 %, and the percentage of

multimapped reads is 2.6 ± 0.05 %, attested for a good alignment of the dataset on the reference

transcriptome. The 76 550 transcripts with more than 1 cpm were selected over the 206 012 transcripts for

further analysis. The reference transcriptome was annotated with diamond v0.9.22 (Buchfink et al., 2015)

against Swissprot, Trembl and NR. Only the best hits of each database were selected if i) the percent of the

query length covered by the alignment was higher than 60% ; ii) the percent of the subject length covered by

the alignment was higher than 40%; iii) the percent of identity of the alignment was higher than 40%.

Interproscan v5.29-68.0 (Jones et al., 2014) was used to associate a Gene Ontology to contigs. The mapped

reads were down-sampled to the lowest number of mapped reads among the 42 samples (down-sampling

normalization) with StreamSampler.jar (https://github.com/shenkers/sampling), i.e. to 70.4 million reads per

sample for all samples (Hughes et al., 2017; Koike et al., 2012; Li et al., 2015), in order to adjust for

differences in sequencing depth among samples. Finally, 76 550 transcripts per station were analyzed for

statistical rhythmic analysis and Gene Ontology study. Row transcriptomic data, annotation table and down-

sampling normalization table are available in the NCBI Bioproject PRJNA628886

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA628886) and in the figshare collection 5127704

(https://doi.org/10.6084/m9.figshare.c.5127704).

Real-time quantitative PCR verification

RNA sequencing results were verified through RT-qPCR analysis (Figure S1). Raw data of expression from

Hüppe et al. (2020) of six circadian core clock genes (clock, cycle, period1, timeless, cryptochrome2, vrille)

and 2 circadian clock-related genes (cryptochrome1 and doubletime2), relative to the geometric mean of the

most stable reference genes (elongation factor 1-𝛼 and 16s rRNA), were analyzed on the exact same

samples analyzed in this study. In parallel, these clock and clock-related transcripts were identified in the



transcriptomic results based on Christie et al. (2013). Profiles of expression were plotted and statistical

rhythmic analysis were performed on both analyzes (RNA sequencing and RT-qPCR) and showed strong

similarities (Figure S1), comforting the relevance of the rhythmic transcriptomic analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Environmental parameters

Information on the location of the sea ice edge at the time of sampling at North were obtained from ice

concentration maps available from the meereisportal (Grosfeld et al., 2016). Modeled data of sun altitude were

obtained from the United States Naval Observatory (https://aa.usno.navy.mil/data/docs/AltAz.php, USNO,

USA) Information on the tidal dynamics have been drawn from the TPX08 model (Egbert and Erofeeva, 2002)

by using the OTPS package (Tidal Prediction Software, http://www-po.coas.oregonstate.edu/~poa/www-

po/research/po/research/tide/index.html), via the mbotps program (MB-System; Caress and Chayes, 2016).

Rhythmic analysis

Rhythmic analysis of transcripts over the 24h cycles was performed in RStudio (Version 1.2.1335, R version 

3.6.3, R Core Team, 2013), using RAIN package. RAIN was specifically designed to detect rhythms in 

biological datasets independent of waveform by using a non-parametric approach (Thaben and Westermark, 

2014). The 76 550 transcripts of each station were tested together (153 100 total transcripts). The false 

discovery rate of the p-values was corrected using the Benjamini-Hochberg method (Benjamini and Hochberg, 

1995). The time series have been tested using the three samples per timepoint as replicates and the 

“independent” mode. Based on the sampling plan and RAIN algorithm terms of use, the following periods were 

tested: 24h, 20h, 16h and 12h. Period lengths of 20h and 24 h were in the circadian range, while period 

lengths of 12 and 16h were in the ultradian range. In this study, gene expression oscillating in a circadian or 

ultradian period range will be called “daily” and “ultradian”, respectively, assuming that they are the results of 

an endogenous clock regulation or a direct response to environmental factors (Helm et al., 2017). For each



period and each transcript, the waveform yielding the most significant result was selected. Then, for each

transcript, the period yielding the most significant result was selected. The associated phase was determined

by RAIN algorithm. When the period length was shorter than the time frame (24h), the second and third

phases were deducted according to the RAIN model. Heatmaps were plotted in RStudio using heatmap3

package (https://www.rdocumentation.org/packages/heatmap3). Relative levels of expression were calculated

for each transcripts by normalizing levels of expression to the median of the seven time points. For

visualization purposes, relative levels of expression above 1 were binned to 1. For each heatmaps, transcripts

were ordered by phases. Amplitudes of oscillating transcripts were calculated as ((maximum value - minimum

value) / minimum value) (Hughes et al., 2012; Payton et al., 2017). Normalization by the minimum value

makes it possible to be exempt from the differences in the level of expression of each transcript. For the RT-

qPCR verification of RNA sequencing (6 core circadian clock genes and 2 circadian clock-related genes,

Figure S1), the period yielding the most significant result in each period range (circadian and ultradian) was

selected, thus assuming two hypothetical significant period lengths per transcripts.

Gene Ontology

Gene Ontology (GO) analysis of biological processes were performed in RStudio (Version 1.2.1335, R version

3.6.3, R Core Team, 2013), using the topGO package (Rahnenfuhrer J, 2019). Enrichment analyses were

performed using Fisher’s exact test and Weight method (Alexa et al., 2006) thanks to homemade scripts

(https://forgemia.inra.fr/bios4biol/bioinfo-utils/-/blob/master/bin/GOEnrichment.R). The false discovery rate of

the p-values was corrected using the Benjamini-Hochberg method (Benjamini and Hochberg, 1995;

McDonald, 2014). For the enrichment analyses presented Fig. S2B, S3B and S4B, circadian and ultradian

transcripts were tested together.
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Figure S1: Real-time quantitative PCR validation of RNA sequencing analysis with 6 core circadian
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green and blue) and from RT-qPCR (RE, relative expression, black) are compared at each station.
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Adjusted-p <0.01, *** Adjusted-p <0.001.
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Figure S2: GO analysis of rhythmic transcripts exclusively at South (74.5°N, ice-free), related to
Figure 3. See legend next page.
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Legend Figure S2: GO analysis of rhythmic transcripts exclusively at South (74.5°N, ice-free), related
to Figure 3. A. Distribution of GO at level 2 (Biological process) in all transcripts (rhythmic and non rhythmic,
n = 76550), daily transcripts exclusively at South (n = 9859), and ultradian transcripts exclusively at South (n
= 2242) (significant rhythmicity with an adjusted p-value < 0.001). Distribution of metabolic process
(GO:0008152), cellular process (GO:0009987), signaling (GO:0023052), multicellular organismal process
(GO:0032501), developmental process (GO:0032502), response to stimulus (GO:0050896), localization
(GO:0051179), biological regulation (GO:0065007), cellular component organization or biogenesis
(GO:0071840) and others was expressed in percentage of transcripts per group. B. Enrichment analysis
(Biological process) of all rhythmic transcripts exclusively at South (74.5°N, ice-free). For each enriched
functions (adjusted p-value > 0.01), the percentage of ultradian and daily transcripts in each enriched
function were detailed. On the right, “n” indicated the total number of transcripts per enriched function
(ultradian and daily), and the stars indicated the level of significance of the enrichment analysis: ** Adjusted-
p <0.01, *** Adjusted-p <0.001.
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Figure S3: GO analysis of rhythmic transcripts exclusively at North (82.5°N, ice-covered), related to
Figure 3. See legend next page.
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Legend Figure S3: GO analysis of rhythmic transcripts exclusively at North (82.5°N, ice-covered),
related to Figure 3. A. Distribution of GO at level 2 (Biological process) in all transcripts (rhythmic and non
rhythmic, n = 76550), daily transcripts exclusively at North (n = 3788), and ultradian transcripts exclusively at
North (n = 2902) (significant rhythmicity with an adjusted p-value < 0.001). Distribution of metabolic process
(GO:0008152), cellular process (GO:0009987), signaling (GO:0023052), multicellular organismal process
(GO:0032501), developmental process (GO:0032502), response to stimulus (GO:0050896), localization
(GO:0051179), biological regulation (GO:0065007), cellular component organization or biogenesis
(GO:0071840) and others was expressed as percentage of transcripts per group. B. Enrichment analysis
(Biological process) of all rhythmic transcripts exclusively at North (82.5°N, ice-covered). For each enriched
functions (adjusted p-value > 0.01), the percentage of ultradian and daily transcripts in each enriched
function were detailed. On the right, “n” indicated the total number of transcripts per enriched function
(ultradian and daily), and the stars indicated the level of significance of the enrichment analysis: ** Adjusted-
p <0.01, *** Adjusted-p <0.001.
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Figure S4: GO analysis of common rhythmic transcripts between South (74.5°N, ice-free) and North
(82.5°N, ice-covered) stations, related to Figure 3. See legend next page.
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Legend Figure S4: GO analysis of common rhythmic transcripts between South (74.5°N, ice-free) and
North (82.5°N, ice-covered) stations, related to Figure 3. A. Distribution of GO at level 2 (Biological
process) in all transcripts (rhythmic and non rhythmic, n = 76550), daily transcripts at both stations (n =
2814), ultradian transcripts at both stations (n = 322), and rhythmic transcripts at both stations, with a switch
of period range at North (n = 2808) (significant rhythmicity with an adjusted p-value < 0.001). Distribution of
metabolic process (GO:0008152), cellular process (GO:0009987), signaling (GO:0023052), multicellular
organismal process (GO:0032501), developmental process (GO:0032502), response to stimulus
(GO:0050896), localization (GO:0051179), biological regulation (GO:0065007), cellular component
organization or biogenesis (GO:0071840) and others was expressed as percentage of transcripts per group.
B. Enrichment analysis (Biological process) of all rhythmic transcripts at both stations. For each enriched
functions (adjusted p-value > 0.01), the percentage of common ultradian, common daily and common
transcripts which change of period range at North were detailed. Transcripts which change of period range at
North were represented as expressed at North (opposite period range at South). On the right, “n” indicated
the total number of transcripts per enriched function (all rhythmicities), and the stars indicated the level of
significance of the enrichment analysis: ** Adjusted-p <0.01, *** Adjusted-p <0.001.
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